• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Geometrica

Progressão Geometrica

Mensagempor DanielRJ » Ter Out 05, 2010 16:48

Olá pessoal to com duvida nesta questão do (ITA) e ta dificil o entendimento como posso relacionar a questão com P.A ou P.G desde já agradeço quem responder!

(ITA)Imagine os numeros inteiros não negativos formando a seguuinte tabela:

\begin{matrix}
0 &3  &6  &9... \\ 
1 &4  &7  &10... \\ 
2 &5  &8  &11... \\ 
 &  &  & 
\end{matrix}

Em que coluna se encontra o número 319?

a)180°
b)107°
c)20°
d)9°
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Progressão Geometrica

Mensagempor MarceloFantini » Ter Out 05, 2010 17:24

Note que cada linha é uma P.A. . Vamos ver os termos gerais:

a_n = a_1 + (n-1)r = (n-1)3

a'_n = a'_1 + (n-1)r = 1 + (n-1)3

a''_1 = a''_1 + (n-1)r = 2 + (n-1)3

Todas tem a mesma razão. Agora temos que encontrar em qual delas está o número 319:

319 = (n-1)3

319 = 1 + (n-1)3 \rightarrow 318 = (n-1)3

319 = 2 + (n-1)3 \rightarrow 317 = (n-1)3

Os números 319 e 317 não são divisíveis por 3, logo só sobra a do meio. Resolvendo, n=107.

É essa a resposta?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Progressão Geometrica

Mensagempor Molina » Ter Out 05, 2010 17:34

danielcdd escreveu:Olá pessoal to com duvida nesta questão do (ITA) e ta dificil o entendimento como posso relacionar a questão com P.A ou P.G desde já agradeço quem responder!

(ITA)Imagine os numeros inteiros não negativos formando a seguuinte tabela:

\begin{matrix}
0 &3  &6  &9... \\ 
1 &4  &7  &10... \\ 
2 &5  &8  &11... \\ 
 &  &  & 
\end{matrix}

Em que coluna se encontra o número 319?

a)180°
b)107°
c)20°
d)9°

Boa tarde, Daniel.

Faça uma progressão aritmética com as três linhas, apenas uma delas o n (número da coluna) será um número inteiro.

Utilizando a fórmula geral de PA, sabemos que:

a_n=a_1+(n-1)r

No nosso caso a_n=319, a_1=0,\,1\,ou\,2 (depende da linha que vamos fazer), n é o que queremos achar e r=3 (a razão é igual nas três linhas).

A linha que dará inteiro é a segunda, veja:

a_n=a_1+(n-1)r

319=1+(n-1)*3

319=1+3n-3

3n=321

n=107

Faça o mesmo com a primeira e terceira linha e você verá que n não será inteiro.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Progressão Geometrica

Mensagempor DanielRJ » Ter Out 05, 2010 17:48

Obrigado pela rapidez na resposta. agora facilitou e muito o entendimento..
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}