por Luiza » Seg Out 04, 2010 19:24
Olá , boa noite , gostaria que me ajudassem com esse problema :
- Preciso dividir - > 15x³-6x²-35x+14 por 3x²-7
Obrigada !
-
Luiza
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Ter Nov 10, 2009 12:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por MarceloFantini » Seg Out 04, 2010 22:21
Lembre-se do algoritmo da divisão de Euclides, ele também vale para os polinômios:

Queremos encontrar os polinômios

e

. Note que se

, então

é divisível por

e

. Como resolver: procure montar um sistema como você aprendeu a fazer divisão de números, só que agora serão polinômios.
Qual é a idéia: coloque

na chave e

fora. Agora vamos ver: um fator

tal que

. Dividindo por

, com

, encontramos que

. Só que, ao fazer isso, também multiplicamos

por

. Isso significa que, do polinômio inicial, subtraímos

e

:

. Sobrou o polinômio

.
Repetindo o processo: um fator

tal que

, e esse fator é

. Multiplicando por

e subtraindo o polinômio resultante:

. Como o grau do divisor é maior que o grau do resto, a divisão pára e o resto

é o que sobrou. Veja:

, portanto o polinômio

é divisível por

e

. Escrevendo na forma do algoritmo da divisão:

Se não parecer muito claro, refaça no papel seguindo os passos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Luiza » Seg Out 04, 2010 22:57
Obrigadaa ! agora entendii como que resolve !
-
Luiza
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Ter Nov 10, 2009 12:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Polinomial
por Cleyson007 » Dom Jun 14, 2009 16:21
- 1 Respostas
- 5909 Exibições
- Última mensagem por Cleyson007

Qua Jun 17, 2009 09:20
Polinômios
-
- Equação Polinomial
por gustavowelp » Dom Jun 27, 2010 11:53
- 3 Respostas
- 3151 Exibições
- Última mensagem por Douglasm

Dom Jun 27, 2010 12:37
Sistemas de Equações
-
- Equação polinomial
por cristina » Sáb Set 18, 2010 17:29
- 5 Respostas
- 3991 Exibições
- Última mensagem por alexandre32100

Sex Set 24, 2010 01:45
Polinômios
-
- (ITA) Equação polinomial
por Carolziiinhaaah » Sex Fev 04, 2011 15:35
- 7 Respostas
- 5662 Exibições
- Última mensagem por Renato_RJ

Qua Fev 16, 2011 00:32
Álgebra Elementar
-
- Função Polinomial
por CrazzyVi » Ter Jul 05, 2011 21:43
- 0 Respostas
- 1245 Exibições
- Última mensagem por CrazzyVi

Ter Jul 05, 2011 21:43
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.