• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume de sólido por rotação

volume de sólido por rotação

Mensagempor hmspriss » Qui Set 23, 2010 11:13

o exercício pede para calcular o volume dex^2+y^2\leq2 e 0\leq y\leq x o resultado era para ser 4\pi(\sqrt[]{2}-1)/3
fiz os calculo usando a fórmula v=\pi \int_{a}^{b} f(x)^2dx mas o resultado deu 4\pi/3, acho que o problema está no intervalo da integração, eu coloquei de 0 até 1, qual seria o intervalo correto?
hmspriss
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Set 23, 2010 10:59
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: volume de sólido por rotação

Mensagempor MarceloFantini » Sex Set 24, 2010 01:32

O raio da semi-circunferência é \sqrt{2}, e não 1. Logo:

y = \sqrt {2 - x^2} = f(x)

V = \pi \int_0^{\sqrt{2}} (f(x))^2 \; dx = \pi \int_0^{\sqrt{2}} (2- x^2) dx = \pi (\int_0^{\sqrt{2}} 2 \; dx - \int_0^{\sqrt{2}} x^2 \; dx) = \pi \left( 2x \right)_0^{\sqrt{2}} - \pi \left( \frac{x^3}{3} \right)_0^{\sqrt{2}} = 2 \pi \sqrt{2} - \frac{2 \pi \sqrt{2}}{3} = \frac { 6 \pi \sqrt{2} - 2 \pi \sqrt{2} }{3} = \frac{4 \pi \sqrt{2}}{3}

Talvez eu tenha esquecido alguma coisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59