• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade.

Probabilidade.

Mensagempor DanielRJ » Seg Set 20, 2010 17:04

Olá venho postar uma questão que estou com duvidas.

Jogando-se um dado duas vezes, qual a probabilidade de obter a soma dos pontos um numero menor que 6?

a)5/18
b)1/3
c)7/18
d)11/36

Possiveis:

1+1 2+1 3+1 4+1
1+2 2+2 3+2
1+3 2+3
1+4

para cada é 1/36.

bom galera a questão é simples, mas o probleema é eu terei que esboçar todas as possibilidades possiveis ou há algum jeito para eu ganhar tempo?
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Probabilidade.

Mensagempor alexandre32100 » Seg Set 20, 2010 20:56

O mais óbvio seria isso mesmo, representar cada uma das somas e fazer a probabilidade.
Porém, vou tentar explicar de uma outra maneiras, mais complexa, talvez, mas sem a necessidade de toda a contagem.
Supomos que em um dos dados tenha tirado n, onde 6\ge n \ge 1. Para o outro dado, há 5-n possibilidades para que seja menor que 6. Assim, o resultado que procuramos é \displaystyle\frac{\displaystyle\sum_{n=1}^{5} n\cdot(5-n)}{2} (dividimos a soma por dois porque cada caso foi contado duas vezes, a ordem dos dados não é levada em conta, diferentemente do que propus inicialmente), o que é o mesmo que \dfrac{1\cdot4+2\cdot3+3\cdot2+4\cdot1+5\cdot0}{2}=\dfrac{4+6+6+4+0}{2}=10. Por fim, a probabilidade é \dfrac{10}{36}=\dfrac{5}{18}.

Sei que a solução que fiz é muito mais complexa do que simplesmente listar os resultados possíveis, mas tente resolver o problema com dois dados, não de 6, mas de 20 faces em que queremos uma soma menor que 12.
Espero ter esclarecido. ;)
alexandre32100
 

Re: Probabilidade.

Mensagempor DanielRJ » Seg Set 20, 2010 22:15

alexandre32100 escreveu:O mais óbvio seria isso mesmo, representar cada uma das somas e fazer a probabilidade.
Porém, vou tentar explicar de uma outra maneiras, mais complexa, talvez, mas sem a necessidade de toda a contagem.
Supomos que em um dos dados tenha tirado n, onde 6\ge n \ge 1. Para o outro dado, há 5-n possibilidades para que seja menor que 6. Assim, o resultado que procuramos é \displaystyle\frac{\displaystyle\sum_{n=1}^{5} n\cdot(5-n)}{2} (dividimos a soma por dois porque cada caso foi contado duas vezes, a ordem dos dados não é levada em conta, diferentemente do que propus inicialmente), o que é o mesmo que \dfrac{1\cdot4+2\cdot3+3\cdot2+4\cdot1+5\cdot0}{2}=\dfrac{4+6+6+4+0}{2}=10. Por fim, a probabilidade é \dfrac{10}{36}=\dfrac{5}{18}.

Sei que a solução que fiz é muito mais complexa do que simplesmente listar os resultados possíveis, mas tente resolver o problema com dois dados, não de 6, mas de 20 faces em que queremos uma soma menor que 12.
Espero ter esclarecido. ;)


Pow alexandre brigadão ai pela resposta, mas acho que vo continuar fazendo a 1° opção mesmo. porque essa ai filho minha mente não suporta^^
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?