• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema linear

Sistema linear

Mensagempor my2009 » Qui Set 16, 2010 11:54

Bom dia. Eu já tentei resolver esse sistema várias vezes e por mais que seja simples sempre dá errado. :oops:

x+ 5y - z = -5
y + 2z =6
x-3z= -11


Obrigada !

Obs : Ao resolver, por favor faça pelo método tradicional. Não faça por matriz.
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema linear

Mensagempor DanielRJ » Qui Set 16, 2010 12:35

Olá amiga eu fiz pelo metodo de escalonamento e deu certinho.

z=3 , y=0 e x=-2
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema linear

Mensagempor my2009 » Qui Set 16, 2010 12:48

Olá daniel cdd , obrigada pq vc colocou as respostas =) , mas se eu postei aqui é pq não entendi o processo... ¬¬
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema linear

Mensagempor my2009 » Qui Set 16, 2010 12:58

Agora eu mesma consegui fazer XD , Obrigada ! Hj eu estou mais tranquila então consegui entender melhor e resolver
my2009
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 104
Registrado em: Seg Mai 24, 2010 13:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema linear

Mensagempor DanielRJ » Qui Set 16, 2010 13:57

Desculpa é que hj to meio preguiçoso mas já que voce achou a resposta não precisa posta xD.
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Sistema linear

Mensagempor filipepaixao » Qua Set 29, 2010 10:46

Eu tentei resolver da forma como está em anexo (Método de Eliminação de Gauss) mas onde estou eu a errar???
visto que z=\frac{31}{7}

Abraço
Anexos
linear.jpg
Avatar do usuário
filipepaixao
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Set 29, 2010 09:48
Formação Escolar: ENSINO MÉDIO
Área/Curso: Programação de Sistemas
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59