• Anúncio Global
    Respostas
    Exibições
    Última mensagem

limites!

limites!

Mensagempor andrepires » Dom Ago 29, 2010 15:05

como resolvo esse limite:::

\lim_{-1}\sqrt[3]{x+2}-1/x+1
andrepires
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Ago 29, 2010 14:52
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limites!

Mensagempor MarceloFantini » Seg Set 06, 2010 12:45

O x+1 é denominador de tudo ou apenas de -1?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: limites!

Mensagempor andrepires » Seg Set 06, 2010 12:52

DE TUDO
andrepires
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Ago 29, 2010 14:52
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: limites!

Mensagempor MarceloFantini » Seg Set 06, 2010 13:25

f(x) = \frac{ \sqrt[3]{x+2} -1 }{x+1} \cdot \frac{(\sqrt[3]{x+2})^2 + (\sqrt[3]{x+2}) \cdot (-1) + (-1)^2}{(\sqrt[3]{x+2})^2 + (\sqrt[3]{x+2}) \cdot (-1) + (-1)^2}

= \frac{x+2 -1}{(x+1) \cdot ( ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 )}

= \frac{1}{ ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 }

\therefore \lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{1}{ ( \sqrt[3]{x+2} )^2 + ( \sqrt[3]{x+2} \cdot (-1)) + (-1)^2 } = 1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.