• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em derivada

Dúvida em derivada

Mensagempor luiz3107 » Seg Ago 23, 2010 02:50

Dada a função f(x) = x . {e}^{-3x}, como ficará a derivada dessa função?

P.S. cheguei a esse resultado: {e}^{-3x} . -3 {e}^{-3x}

estou em dúvida se derivei certo :-P
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Dúvida em derivada

Mensagempor Dan » Seg Ago 23, 2010 14:57

Note que essa função é uma multiplicação de x por e. Assim, você tem que aplicar a regra da multiplicação: (derivada do primeiro termo)(segundo termo sem derivar) + (primeiro termo sem derivar)(derivada do segundo termo).

f(x)=x.{e}^{-3x}

f'(x)=1.{e}^{-3x} + {e}^{-3x}.(-3)x

f'(x) = {e}^{-3x} - 3x{e}^{-3x}
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Dúvida em derivada

Mensagempor luiz3107 » Seg Ago 23, 2010 15:15

Vlw, agora sei onde estava errando!
luiz3107
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sáb Jun 19, 2010 19:42
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.