• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de logarítmos

Sistemas de logarítmos

Mensagempor Danilo Dias Vilela » Qua Ago 18, 2010 16:22

Gostaria de ajuda para resolver o seguinte sistema de logarítmos:

a) (log_{3}x+1)\left(3^{logy} -1\right)=0
log_3(3x+2^{y})=1

Obrigado
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de logarítmos

Mensagempor MarceloFantini » Qua Ago 18, 2010 22:18

\log_3 x +1 = 0 \Rightarrow \log_3 x = -1 \Rightarrow x = \frac{1}{3}
\log_3 (3x + 2^y) = 1 \Rightarrow 3x + 2^y = 3 \Rightarrow 2^y = 2 \Rightarrow y = 1
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistemas de logarítmos

Mensagempor Danilo Dias Vilela » Qui Ago 19, 2010 00:24

Até aqui tudo bem. Mas você esqueceu de resolver a segunda parte da primeira equação que diz assim ({3}^{logy}-1). Se puder resolver agradeço.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Sistemas de logarítmos

Mensagempor MarceloFantini » Qui Ago 19, 2010 18:44

Eu não preciso, já tenho o valor do y. Confira você mesmo. Mas falando nisso, qual a base do logaritmo no expoente do 3?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistemas de logarítmos

Mensagempor Danilo Dias Vilela » Sex Ago 20, 2010 19:36

Base 10. Quando um logaritmo não tem base presume-se ser 10. Bom eu entendo assim. Muito obrigado professor.
Danilo Dias Vilela
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Qua Set 09, 2009 01:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.