por Bebel » Dom Ago 08, 2010 00:24
Seja z um número complexo de módulo 1 e argumento

. Mostre que

, com n inteiro positivo.
-
Bebel
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Jun 21, 2010 18:51
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Módulo
por Rodrigo Tomaz » Sex Fev 19, 2010 11:36
- 4 Respostas
- 2845 Exibições
- Última mensagem por MarceloFantini

Sex Mar 05, 2010 16:09
Funções
-
- Modulo
por Sandy26 » Ter Abr 27, 2010 14:46
- 5 Respostas
- 2817 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 17:57
Álgebra Elementar
-
- Modulo.
por 380625 » Qui Mar 17, 2011 11:21
- 2 Respostas
- 1997 Exibições
- Última mensagem por LuizAquino

Sex Set 09, 2011 10:47
Cálculo: Limites, Derivadas e Integrais
-
- Módulo
por torilleon » Sáb Ago 20, 2011 19:28
- 2 Respostas
- 1487 Exibições
- Última mensagem por Neperiano

Sáb Ago 20, 2011 20:40
Álgebra Elementar
-
- modulo
por rodrigonapoleao » Seg Jan 21, 2013 13:19
- 1 Respostas
- 1435 Exibições
- Última mensagem por e8group

Seg Jan 21, 2013 15:23
Inequações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.