• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor diogoaredes » Ter Jul 20, 2010 08:51

2 - Determine os valores dos seguintes limites, caso existam:

\lim_{x\rightarrow0} \frac{3{x}^{2}-8}{x-2}




\lim_{x\rightarrow2} \left( 3{x}^{2}-5x+2\right)




\lim_{x\rightarrow0} \left({x}^{5}-6{x}^{4}+7 \right)



\lim_{x\rightarrow3} \left({x-1}^{2} \right)\left(x+1 \right)



\lim_{x\rightarrow5} \frac{x+3}{5-x}



\lim_{x\rightarrow2} \frac{x+1}{x+2}



\lim_{x\rightarrow1} \frac{{x}^{2}-1}{x-1}



\lim_{x\rightarrow5} \frac{x+3}{5-x}



\lim_{x\rightarrow2} \frac{x+1}{x+2}



\lim_{x\rightarrow1} \frac{{x}^{2}-1}{x-1}



\lim_{x\rightarrow2} \frac{{x}^{2}-x-6}{{x}^{2}+3x+2}



\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{x-4}



\lim_{x\rightarrow3} \frac{{x}^{2}-9}{x-3}



\lim_{x\rightarrow1} \frac{{x}^{2} +4x-5}{{x}^{2}-1}



\lim_{x\rightarrow1} \frac{\sqrt[]{x}-1}{x-1}



\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{x-4}



\lim_{x\rightarrow9} \frac{\sqrt[]{x}-3}{x-9}



\lim_{x\rightarrow2} \frac{{x}^{3}-8}{{x}^{2}-4}



\lim_{x\rightarrow2} \frac{{x}^{3}-8x+8}{{3x}^{3}-{15x}^{2}+16x+4}


Pessoal, por favor, me ajudem a resolver estas questões de limite, estou precisando muito.
Anexos

[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]

diogoaredes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Jul 06, 2010 09:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: Limites

Mensagempor Molina » Ter Jul 20, 2010 14:29

Boa tarde, Diogo.

Antes de sair resolvendo essas questões para você, sugiro que você leia algumas propriedades dos limites. São propriedades fáceis e pelo o que pude olhar muita de suas dúvidas poderão ser sanadas com elas.

Por exemplo, uma propriedade básica é que O limite da soma é a soma dos limites.

Com isso você já pode resolver a segunda questão:

\lim_{x\rightarrow2} \left( 3{x}^{2}-5x+2\right)

Usando essa propriedade podemos escrever isto da seguinte forma:

\lim_{x\rightarrow2} 3{x}^{2}- \lim_{x\rightarrow2} 5x+ \lim_{x\rightarrow2} 2

Agora é só aplicar o limite:

3*2^2 - 5*2 + 2=4

Estou aqui pra te ajudar.

Utilize as outras propriedades que te indiquei para resolver as outras questões.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.