por PeIdInHu » Qua Jul 14, 2010 21:04
Alguem me ajuda com esse exercicio ......
Encontre p e q tais que g seja contínua e diferenciável em

.Justifique a sua resposta.
(Lembre que uma função f é diferenciável em Dom(f) se existe f'(x) para todo x

Dom(f).)
g(x)= 6x+1 ,se x<3 e
px²+qx ,se x

3
-
PeIdInHu
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 22, 2010 14:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Imformatica Biomedica
- Andamento: cursando
por Tom » Qua Jul 14, 2010 23:09
Como as duas subfunções são polinomiais, então são contínuas e diferenciáveis. Devemos, portanto, apenas fazer que os limites laterais de

quando

sejam iguais, já que

é, por alto, abscissa do único possível ponto de descontinuidade.
De imediato já temos o limite quando

pela esquerda:

; esse deve ser o limite quando

pela direita, isto é:

Assim, o conjunto dos pares

que tornam a função diferenciável formam uma reta de equação

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por PeIdInHu » Qui Jul 15, 2010 01:03
vlwsss =)
-
PeIdInHu
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Mai 22, 2010 14:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Imformatica Biomedica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Continuidade] Exercício
por fff » Sáb Fev 01, 2014 12:39
- 2 Respostas
- 1475 Exibições
- Última mensagem por fff

Dom Fev 02, 2014 10:23
Cálculo: Limites, Derivadas e Integrais
-
- [Continuidade] Exercício
por fff » Sex Fev 07, 2014 18:10
- 4 Respostas
- 1772 Exibições
- Última mensagem por fff

Sáb Fev 08, 2014 12:41
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por AlbertoAM » Seg Abr 04, 2011 20:59
- 8 Respostas
- 5398 Exibições
- Última mensagem por LuizAquino

Qua Abr 06, 2011 10:33
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por guilherme5088 » Sáb Out 12, 2019 15:31
- 1 Respostas
- 5218 Exibições
- Última mensagem por adauto martins

Ter Out 15, 2019 23:11
Cálculo: Limites, Derivadas e Integrais
-
- Continuidade
por MCordeiro » Qui Jul 16, 2020 19:11
- 1 Respostas
- 3380 Exibições
- Última mensagem por adauto martins

Qua Out 14, 2020 12:00
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.