por Jonatan » Qua Jul 07, 2010 11:32
Determine as equações das retas que formam 45º com o eixo dos x e estão à distância
![\sqrt[]{2} \sqrt[]{2}](/latexrender/pictures/f21662d1cabab6e8b273a4b6f1cd663a.png)
do ponto P (3,4).
Pessoal, tentei fazer o seguinte:
Para uma reta:
y = ax + b
y = 1x + b (pois o a é o coeficiente angular, tg

= a e no caso do execício,

; tg 45º = 1)
Como as retas estão com inclinação de 45º em relação ao eixo dos x, trata-se de uma função identidade, em que o coeficiente linear é nulo e o coeficiente angular é 1).
E a outra reta, como faz?
Alguém pode resolver o exercício para mim, passo-a-passo? Estou com dúvidas nessa parte da matéria, estudo sozinho e fica meio complicado. Se alguém puder ajudar, agradeço.
-
Jonatan
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Qua Jun 16, 2010 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Douglasm » Qua Jul 07, 2010 18:33
Olá Jonatan. Primeiramente sabemos que o coeficiente angular de ambas as retas é 1. Deste modo, eu fiz um desenho para ilustrar a situação:

- retas.jpg (8.37 KiB) Exibido 3183 vezes
(Conto com a sua boa vontade em verificar que os triângulos azuis possuem lados

,

e

)
Por conta disso, podemos encontrar os pontos de intersecção entre a reta que passa pelo ponto P e pelas duas retas. Evidentemente os pontos são (2,5) e (4,3). Finalmente é só determinarmos as retas:

-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Tom » Qui Jul 08, 2010 00:53
A resolução do Douglas está correta. Segue abaixo outro método para obter o mesmo resultado usando a técnica de
translação:
Defina um sistema de coordenadas retangulares auxiliar

com origem no ponto

. Para esse sistema, a equação da circunferência em questão é :

. Ao passo que no sistema de coordenadas convencional a equação seria

Note que a equivalência translacional é, portanto:

e

Ainda para o sistema

, como as retas que queremos achar possuem coeficiente angular igual a

, basta verificar a intercessão com a circunferência supracitada fazendo

; assim obtemos :

e, respeitando a posição dos eixos definidos obtemos os referidos pontos de intercessão

a saber:

Decorre assim que a equação das retas é:

e

Aplicando, agora, a equivalência translacional entre eixos:
Se

, isto é,

Se

, isto é,

Assim, no sistema de coordenadas convencional

as retas em questão são:

e

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por MarceloFantini » Qui Jul 08, 2010 17:09
E existe a terceira resolução (que é bom que seja a última a ser apresentada) que é usando a fórmula de distância de ponto a reta;

Logo,

ou

Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Tom » Sex Jul 09, 2010 00:21
Fantini escreveu:(que é bom que seja a última a ser apresentada)
Uai ?

Tom
-
Tom
- Usuário Parceiro

-
- Mensagens: 75
- Registrado em: Sex Jul 02, 2010 00:42
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Automação e Controle Industrial
- Andamento: formado
por MarceloFantini » Sex Jul 09, 2010 11:20
Para que ele não se prenda a fórmulas e aprenda a pensar e ver outros jeitos de resolver.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Distância de ponto à reta
por Jonatan » Qua Jul 07, 2010 11:24
- 1 Respostas
- 2638 Exibições
- Última mensagem por Tom

Qua Jul 07, 2010 13:11
Geometria Analítica
-
- Reta distancia ponto
por felipe grion » Seg Fev 20, 2012 10:41
- 1 Respostas
- 1632 Exibições
- Última mensagem por LuizAquino

Seg Fev 20, 2012 11:43
Geometria Analítica
-
- Distância ponto-reta
por ViniciusAlmeida » Seg Ago 24, 2015 21:03
- 1 Respostas
- 3417 Exibições
- Última mensagem por nakagumahissao

Sex Set 11, 2015 11:32
Geometria Analítica
-
- [Distância de Ponto a Reta]
por anselmojr97 » Qui Abr 07, 2016 00:18
- 0 Respostas
- 1239 Exibições
- Última mensagem por anselmojr97

Qui Abr 07, 2016 00:18
Geometria Analítica
-
- distancia de ponto a reta ajuda aew
por Fabricio dalla » Seg Mai 02, 2011 17:34
- 1 Respostas
- 1251 Exibições
- Última mensagem por LuizAquino

Sex Mai 20, 2011 21:48
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.