• Anúncio Global
    Respostas
    Exibições
    Última mensagem

modulo/ortogonalidade

modulo/ortogonalidade

Mensagempor guigo1302 » Sex Jun 18, 2010 22:28

Boa noite. Tenho o seguinte problema para resolver:

Sejam u=(1,1,-3) e v=(2,1,1) vetores no R³. Verifique se existe um vetor w, de módulo \sqrt{56}, simultaneamente ortogonal aos vetores a=-u+2v-j+k e b=u+v-i. (u,v,w,i,j,k são vetores, mas eu não sei faze a setinha em cima).



eu achei a=(3,0,6) e b=(2,2,-2).
também fiz que |w|=\sqrt{56}=\sqrt{x^2+y^2+z^2}.
x^2+y^2+z^2=56


Também fiz o produto misto axb para achar um vetor ortogonal. Tive como resultado -12i+18j+6z.


Só que agora eu não sei mais o que fazer. Desculpa se eu postei algo errado, é a primeira vez que utilizo o fórum. E obrigado ;D
guigo1302
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Jun 18, 2010 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da computação
Andamento: cursando

Re: modulo/ortogonalidade

Mensagempor DanielFerreira » Seg Jun 21, 2010 13:01

Também fiz o produto misto axb para achar um vetor ortogonal. Tive como resultado

achemos o vetor ortogonal através do produto vetorial.
a = - u + 2v - j + k
a = - (1, 1, - 3) + 2(2, 1, 1) - j + k
a = - i - j + 3k + 4i + 2j + 2k - j + k
a = 3i  + 6k
a = (3, 0, 6)


b = u + v - i
b = (1, 1, - 3) + (2, 1, 1) - i
b = i + j - 3k + 2i + j + k - i
b = 2i  + 2j - 2k
b = (2, 2, - 2)

|i j k| i j|
|3 0 6| 3 0|
|2 2 -2| 2 2| =
12j + 6k - 12i + 6j =
- 12i + 18j + 6k =
(- 12, 18, 6)

a resposta é não!!!

o módulo é \sqrt{504}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: