• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema

Problema

Mensagempor Florisbela » Dom Mai 23, 2010 19:28

Boa noite. Como faço para resolver esse problema?

Seja "a" uma raiz da equação {x}^{2}+2x+{c}^{2}=0, em que C é um número real positivo. Se o discriminante dessa equação é menor que zero, então encontre |a|.
Florisbela
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 23, 2010 19:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão Ambiental
Andamento: cursando

Re: Problema

Mensagempor DanielFerreira » Qua Jun 09, 2010 19:44

delta = 4 - 4c²
delta < 0

4 - 4c² < 0
- 4c² < - 4
c² > 1
c > 1

x^2 + 2x + 2^2 = 0
x^2 + 2x + 4 = 0
delta = 4 - 16
delta = - 12

a' = \frac{- 2 + 2\sqrt{3}}{2}
a' = - 1 + 1\sqrt{3}
a' = \sqrt{3} - 1

ou

a'' = \frac{- 2 - 2\sqrt{3}}{2}
a'' = - 1 - 1\sqrt{3}
a'' = - \sqrt{3} - 1

(...)
|a| = \sqrt{3} - 1
ou
|a| = \sqrt{3} + 1

acho que é isso...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Problema

Mensagempor MarceloFantini » Qua Jun 09, 2010 20:35

Esta equação está muito estranha. Se ela tem discriminante é menor que zero, ela NÃO TEM raízes reais. Danjr, também não se esqueça que se o discriminante é menor que zero, suas respostas teria uma unidade imaginária ali, o que não acontece (porque não podemos afirmar que estamos trabalhando com os complexos).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Problema

Mensagempor DanielFerreira » Seg Jun 14, 2010 22:07

Tens razão.
não sei como transformei - 12 em + 12.
:-D
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59