• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatórios

Somatórios

Mensagempor Douglasm » Ter Fev 23, 2010 11:17

Eu resolvi a seguinte questão e encontrei uma resposta diferente do gabarito. Eis a questão:

Calcule \sum_{k=0}^n (k+1) C_n ^k.

Minha resolução:

\sum_{k=0}^n (k+1) C_n ^k = \sum_{k=0}^n (k+1).\sum_{k=0}^n C_n ^k

\sum_{k=0}^n (k+1) C_n ^k = 2^n \sum_{k=0}^n C_{k+1} ^1

(Os resultados são obtidos através dos teoremas das colunas e das linhas do triângulo de Pascal, respectivamente.)

\sum_{k=0}^n (k+1) C_n ^k = C_{n+2} ^2 . 2^n = (n+2)(n+1).2^{n-1}

No gabarito a resposta é somente (n+2).2^{n-1}

Será que estou fazendo errado mesmo ou o gabarito esqueceu o (n+1)?
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Somatórios

Mensagempor Mathmatematica » Dom Jun 06, 2010 21:44

Olá Douglas!
Infelizmente você está fazendo errado. A passagem \sum^n_{k=0}(k+1)C^k_{n}=\sum^n_{k=0}(k+1)\sum^n_{k=0}C^k_n está errada. Não entendi muito bem o que é C^k_n (não seria C^n_k?).
Mas voltando ao erro: o fator (k+1) possui um k e o k no somatório está variando. Da mesma forma, o fator C^k_n também possui um k e, no somatório, o k varia. Como o que eu sei sobre somatório é pouco vou tentar explicar com um contra-exemplo para aquela passagem:

\sum^n_{k=1}k^2=1^2+2^2+3^2+ \cdots + n^2

\left(\sum^n_{k=1}k\right)^2=(1+2+3+4+5+ \cdots n)^2

Como podemos perceber \sum^n_{k=1}k^2\ne \left(\sum^n_{k=1}k\right)^2. De acordo com a sua passagem teríamos:

\sum^n_{k=1}k^2=\sum^n_{k=1}k.k=\sum^n_{k=1}k\sum^n_{k=1}k=\left(\sum^n_{k=1}k\right)^2

Espero que tenha entendido. (Vou estudar mais o assunto.... Preciso explicar melhor!!!)
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Somatórios

Mensagempor Douglasm » Dom Jun 06, 2010 22:42

Olá Mathmatematica. Obrigado por trazer a tona essa questão (ela é de 3 meses atrás =P), pois hoje consegui resolvê-la, graças a Gauss! Vou postar aqui para o caso de alguém se interessar:

\sum_{k=0}^n (k+1) C_k^n  = 1.(C_0^n) + 2.(C_1^n) + ... + n.(C_{n-1}^n) + (n+1).(C_n^n)

Lembrando que:

C_0^n = C_n^n \; ; \; C_1^n = C_{n-1}^n \; (...)

Somando os termos nas extremidades:

\sum_{k=0}^n (k+1) C_k^n  = \frac{(n+2) \sum_{k=0}^n C_k^n}{2} \therefore

\sum_{k=0}^n (k+1) C_k^n  = (n+2)2^{n-1}

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?