• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Somatórios

Somatórios

Mensagempor Douglasm » Ter Fev 23, 2010 11:17

Eu resolvi a seguinte questão e encontrei uma resposta diferente do gabarito. Eis a questão:

Calcule \sum_{k=0}^n (k+1) C_n ^k.

Minha resolução:

\sum_{k=0}^n (k+1) C_n ^k = \sum_{k=0}^n (k+1).\sum_{k=0}^n C_n ^k

\sum_{k=0}^n (k+1) C_n ^k = 2^n \sum_{k=0}^n C_{k+1} ^1

(Os resultados são obtidos através dos teoremas das colunas e das linhas do triângulo de Pascal, respectivamente.)

\sum_{k=0}^n (k+1) C_n ^k = C_{n+2} ^2 . 2^n = (n+2)(n+1).2^{n-1}

No gabarito a resposta é somente (n+2).2^{n-1}

Será que estou fazendo errado mesmo ou o gabarito esqueceu o (n+1)?
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Somatórios

Mensagempor Mathmatematica » Dom Jun 06, 2010 21:44

Olá Douglas!
Infelizmente você está fazendo errado. A passagem \sum^n_{k=0}(k+1)C^k_{n}=\sum^n_{k=0}(k+1)\sum^n_{k=0}C^k_n está errada. Não entendi muito bem o que é C^k_n (não seria C^n_k?).
Mas voltando ao erro: o fator (k+1) possui um k e o k no somatório está variando. Da mesma forma, o fator C^k_n também possui um k e, no somatório, o k varia. Como o que eu sei sobre somatório é pouco vou tentar explicar com um contra-exemplo para aquela passagem:

\sum^n_{k=1}k^2=1^2+2^2+3^2+ \cdots + n^2

\left(\sum^n_{k=1}k\right)^2=(1+2+3+4+5+ \cdots n)^2

Como podemos perceber \sum^n_{k=1}k^2\ne \left(\sum^n_{k=1}k\right)^2. De acordo com a sua passagem teríamos:

\sum^n_{k=1}k^2=\sum^n_{k=1}k.k=\sum^n_{k=1}k\sum^n_{k=1}k=\left(\sum^n_{k=1}k\right)^2

Espero que tenha entendido. (Vou estudar mais o assunto.... Preciso explicar melhor!!!)
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando

Re: Somatórios

Mensagempor Douglasm » Dom Jun 06, 2010 22:42

Olá Mathmatematica. Obrigado por trazer a tona essa questão (ela é de 3 meses atrás =P), pois hoje consegui resolvê-la, graças a Gauss! Vou postar aqui para o caso de alguém se interessar:

\sum_{k=0}^n (k+1) C_k^n  = 1.(C_0^n) + 2.(C_1^n) + ... + n.(C_{n-1}^n) + (n+1).(C_n^n)

Lembrando que:

C_0^n = C_n^n \; ; \; C_1^n = C_{n-1}^n \; (...)

Somando os termos nas extremidades:

\sum_{k=0}^n (k+1) C_k^n  = \frac{(n+2) \sum_{k=0}^n C_k^n}{2} \therefore

\sum_{k=0}^n (k+1) C_k^n  = (n+2)2^{n-1}

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59