• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor JailsonJr » Sex Mai 14, 2010 12:48

(Funrei-MG) Seja f a função que satisfaz a seguinte igualdade:
\frac{f(x)-3}{f(x)+3}=x
O domínio de f é o conjunto:

Resp.: {x\epsilon R | x\neq1}
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor Douglasm » Sex Mai 14, 2010 12:53

Olá Jailson. Na verdade é uma questão bastante simples, basta isolar f(x). Tente fazer isso e depois poste aqui. =)
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor JailsonJr » Sex Mai 14, 2010 20:12

f(x)-3 = x(f(x)+3)

-3 = xf(x)+3x-f(x)

-3-3x = x(fx)-f(x)

-6 = \frac{xf(x)-f(x)}{x}

-6 = f(x)-f(x)

-6 = 0

Provavelmente ta errado, mas se estiver certo, explica aê o porque. Vlw!
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor Douglasm » Sex Mai 14, 2010 20:36

Você começou certo, só errou a partir daqui:

-3-3x = xf(x) - f(x) \: \therefore

-3-3x = (x-1) f(x) \: \therefore

f(x) = \frac{-3-3x}{x-1}

Como o denominador jamais pode ser zero, a única condição que precisa ser satisfeita é:

x-1 \neq 0 \: \therefore \: x \neq 1

E você tem ai a resposta.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor JailsonJr » Sex Mai 14, 2010 20:56

Aê!, entendi... :-D
Não tinha pensado em isolar f(x)... :lol:
Obrigado.
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}