por Douglaspimentel » Qui Abr 15, 2010 18:39
Considere o seguinte sistema de equações no conjunto dos
números reais IR , nas variáveis x, y e z , no qual k é
um parâmetro:
(k-2)x + y + ( k-2)z =4
x+ (k-2)y +z =-7
x+ y + (k-2)z =10
O conjunto que representa os valores de k para os quais o
sistema possua uma única solução é dado por:
A) IR - {1,3} (C) {1,3}
B) IR - {-1,1} (D) {-1,1}
-
Douglaspimentel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Mar 05, 2010 12:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nada
- Andamento: cursando
por Elcioschin » Qui Abr 15, 2010 20:14
(k-2)*x + y + ( k-2)*z = 4
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
INvertendo a ordem
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
(k-2)*x + y + ( k-2)*z = 4
Fazendo por escalonamento:
1 ..... k-2 ...... 1 ........ - 7
1 ...... 1 ...... k-2 ....... 10 ----> II - I
k-2 ... 1 ....... k-2 ....... 4 -----> III - (k-2)*I
1 ..... k-2 ...... 1 ........ - 7
0 ......3-k ..... k-3 ....... 17 ---->
0 .. 1- (k-2)² .. 0 ......... 4 + 7*(k-2)
[1 - (k-2)²]*y = 4 + t*(k-2) ----> (4k - k² - 3)*y = 7*k - 10 -----> y = (7*k - 10)/(4k - k² - 3)
Para existir uma única solução -----> F = -k² + 4k - 3 <> 0 -----> <> significa "diferente de"
Raízes desta função F ----> - k² + 4k - 3 = 0 ----> k = 1 e k = 3
A função F é uma parábola com a concavidade voltada para baixo, logo para a função não ser negativa 1 < k < 3
Alternativa C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas
por Jansen » Dom Mai 10, 2009 00:01
- 5 Respostas
- 4511 Exibições
- Última mensagem por Molina

Seg Mai 11, 2009 04:36
Sistemas de Equações
-
- sistemas
por Magda » Sex Jun 19, 2009 18:37
- 5 Respostas
- 3568 Exibições
- Última mensagem por Magda

Sex Ago 07, 2009 19:49
Sistemas de Equações
-
- Sistemas...
por GABRIELA » Ter Set 08, 2009 21:41
- 6 Respostas
- 3344 Exibições
- Última mensagem por GABRIELA

Qua Set 09, 2009 18:52
Matrizes e Determinantes
-
- Sistemas
por GABRIELA » Qua Set 09, 2009 18:59
- 2 Respostas
- 1625 Exibições
- Última mensagem por GABRIELA

Qui Set 10, 2009 17:08
Sistemas de Equações
-
- Sistemas
por GABRIELA » Seg Set 21, 2009 17:25
- 4 Respostas
- 2273 Exibições
- Última mensagem por GABRIELA

Ter Set 22, 2009 09:45
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.