por Douglaspimentel » Qui Abr 15, 2010 18:39
Considere o seguinte sistema de equações no conjunto dos
números reais IR , nas variáveis x, y e z , no qual k é
um parâmetro:
(k-2)x + y + ( k-2)z =4
x+ (k-2)y +z =-7
x+ y + (k-2)z =10
O conjunto que representa os valores de k para os quais o
sistema possua uma única solução é dado por:
A) IR - {1,3} (C) {1,3}
B) IR - {-1,1} (D) {-1,1}
-
Douglaspimentel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Mar 05, 2010 12:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nada
- Andamento: cursando
por Elcioschin » Qui Abr 15, 2010 20:14
(k-2)*x + y + ( k-2)*z = 4
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
INvertendo a ordem
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
(k-2)*x + y + ( k-2)*z = 4
Fazendo por escalonamento:
1 ..... k-2 ...... 1 ........ - 7
1 ...... 1 ...... k-2 ....... 10 ----> II - I
k-2 ... 1 ....... k-2 ....... 4 -----> III - (k-2)*I
1 ..... k-2 ...... 1 ........ - 7
0 ......3-k ..... k-3 ....... 17 ---->
0 .. 1- (k-2)² .. 0 ......... 4 + 7*(k-2)
[1 - (k-2)²]*y = 4 + t*(k-2) ----> (4k - k² - 3)*y = 7*k - 10 -----> y = (7*k - 10)/(4k - k² - 3)
Para existir uma única solução -----> F = -k² + 4k - 3 <> 0 -----> <> significa "diferente de"
Raízes desta função F ----> - k² + 4k - 3 = 0 ----> k = 1 e k = 3
A função F é uma parábola com a concavidade voltada para baixo, logo para a função não ser negativa 1 < k < 3
Alternativa C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas
por Jansen » Dom Mai 10, 2009 00:01
- 5 Respostas
- 4707 Exibições
- Última mensagem por Molina

Seg Mai 11, 2009 04:36
Sistemas de Equações
-
- sistemas
por Magda » Sex Jun 19, 2009 18:37
- 5 Respostas
- 3746 Exibições
- Última mensagem por Magda

Sex Ago 07, 2009 19:49
Sistemas de Equações
-
- Sistemas...
por GABRIELA » Ter Set 08, 2009 21:41
- 6 Respostas
- 3493 Exibições
- Última mensagem por GABRIELA

Qua Set 09, 2009 18:52
Matrizes e Determinantes
-
- Sistemas
por GABRIELA » Qua Set 09, 2009 18:59
- 2 Respostas
- 1718 Exibições
- Última mensagem por GABRIELA

Qui Set 10, 2009 17:08
Sistemas de Equações
-
- Sistemas
por GABRIELA » Seg Set 21, 2009 17:25
- 4 Respostas
- 2402 Exibições
- Última mensagem por GABRIELA

Ter Set 22, 2009 09:45
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.