• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise combinatória

Análise combinatória

Mensagempor Fernanda Lauton » Dom Abr 11, 2010 19:47

Um trem de passageiros é constituído de uma locomotiva e 6 vagões, sendo um deles restaurante. Sabendo que a locomotiva deve ir á frente e que o vagão restaurante não pode ser colocado imediatamente apóes a locomotiva, o número de maneiras diferentes de montar a composição é?
Fernanda lauton
Fernanda Lauton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Seg Mar 29, 2010 17:21
Localização: Minas Gerais
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado

Re: Análise combinatória

Mensagempor Neperiano » Seg Abr 12, 2010 13:19

Ola

Vamos chamar os vagões de 1,2,3,4 e 5
O 6 vagão é o restaurante

Para se calcular as possibilidades:

São 6 vagões mais a locomotiva, então são 7 números

Na frente só pode haver a locomotiva, então é 1 possibilidade
Atrás dela, pode haver qualquer vagão menos o restaurante. então são 5 possibilidades.
No 3, pode haver qualquer vagão menos o que ja foi colocado atras da locomotiva, entretanto o restaurante pode ser colocado são 5 possibilidades.
No 4 são 4 possibilidades, pois 2 vagões ja foram colocados antes e a locomotiva
No 5 3 possibilidades
No 6 2 possibilidades
no 7 1 possibilidade

Locomotiva, x Vagões menos o 6, x ,Vagões, x ,Vagões, x ,Vagões, x ,Vagões, x ,Vagões.
1 x 5 x 5 x 4 x 3 x 2 x 1

= 600 Possibilidades Diferentes

Se não entender, faça assim

Escolha um vagão para cada um dos 7 numeros e veja quantos falta para completar.

Ex:

Locomotiva, só ela pode estar aqui, 1 possibilidade

Vagão 1, Os vagões 1,2,3,4,5, podem estar aqui, 5 possibilidades

Restaurante, Os vagões do restaurante, 2,3,4,5 podem estar aqui. 5 possibilidades, OBS: O vagão 1 ja foi escolhido antes, por isto não pode estar aqui, pois ja esta lá

Vagão 2, os 2,3,4,5, 4 possibilidades
Vagão 3, os 3,4,5, 3 possibilidades
Vagão 4, os 4 e 5, 2 possibilidades
Vagão 5, o 5, 1 possibilidade


Multiplica as possibilidades, vai dar 600 possibilidades

Espero ter ajudado

Qualquer duvida
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: Análise combinatória

Mensagempor Fernanda Lauton » Seg Abr 19, 2010 17:19

Nem foi preciso explicar novamente já entendi o seu raciocínio logo de primeira, vc explica muito bem. MUITO OBRIGADA!
Fernanda lauton
Fernanda Lauton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Seg Mar 29, 2010 17:21
Localização: Minas Gerais
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: