• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema (Enem 2003)

Problema (Enem 2003)

Mensagempor Karina » Sáb Mar 27, 2010 13:57

Uma editora pretende despachar um lote de livros, agrupados em 100 pacotes de
20 cm X 20 cm X 30 cm. A transportadora acondicionará esses pacotes em caixas com formato de bloco retangular de
40 cm X 40 cm X 60 cm. A quantidade minima necessária de caixas para esse envio é:

a) 9
b) 11
c) 13
d) 15
e) 17


Alguem pode me ajudar? Eu não consigui interpretar direito
esse problema, não sei por onde começar
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando

Re: Problema (Enem 2003)

Mensagempor Molina » Sáb Mar 27, 2010 17:20

Karina escreveu:Uma editora pretende despachar um lote de livros, agrupados em 100 pacotes de
20 cm X 20 cm X 30 cm. A transportadora acondicionará esses pacotes em caixas com formato de bloco retangular de
40 cm X 40 cm X 60 cm. A quantidade minima necessária de caixas para esse envio é:

a) 9
b) 11
c) 13
d) 15
e) 17


Alguem pode me ajudar? Eu não consigui interpretar direito
esse problema, não sei por onde começar

Boa tarde, Karina.

Vou tentar te ajudara interpretar o problema, e não resolvê-lo:

Temos aqui um problema envolvendo volumes. Chamaremos de V_p o volume total do pacote e de V_c o volume total da caixa. Tanto os pacotes, quanto a caixa são paralelepípedos. A fórmula para o volume deste sólido é dado por V=a*b*c, onde a, b e c são os lados do paralelepípedo.

Então comece fazendo isso, verificando o volume de um pacote e o volume de uma caixa. Agora que você tem a informação do volume do pacote, lembre-se que iremos despachar 100 pacotes. Então basta fazer 100*volumedeumpacote. Com isso você vai descobrir o V_p que é o volume total dos pacotes.

Como queremos saber quantas caixas são necessárias para armazenas esses pacotes, basta dividir os volumes: \frac{V_p}{V_c}.

Você chegará num valor 'não-inteiro'. Logo, o menor número de caixas necessárias é o menor inteiro maior do que este 'não-inteiro'.


Acho que com isso você consegue resolver.
Aguardo sua confirmação. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Problema (Enem 2003)

Mensagempor Karina » Sáb Mar 27, 2010 19:26

Agora entendi, cheguei ao resultado 12,5
arredondado da 13 e fecha com o gabarito
Obrigado pela ajuda.
Karina
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Fev 09, 2010 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Enfermagem
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.