por adauto martins » Ter Ago 24, 2021 10:48
(ITA-1965)p(x) é um polinomio de 5° grau e 1,3 e 5 sao raizes da equaçao p(x)=0.se Q(x)=x^2-4x+3 entao
a fraçao p(x)/Q(x) é
a)um polinomio
b)um polinomio de 2°grau
c)negativa para raizes para valores de x compreendidos entre as raizes de Q(x)=0
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Ago 24, 2021 11:19
soluçao
pelos dados do problema teremos
p(x)=(x-1).(x-3).(x-5)r(x),onde r(x) é um polinomio de 2° grau
Q(x)=x^2-4x+3=0...teremos x=1,x=3 raizes de Q(x)=0...logo
p(x)/Q(x)=((x-1)(x-3)(x-5)r(x))/((x-1)(x-3))=(x-5).r(x) que é um polinomio de 3°...
logo a opçao b) esta descartada...
entre x=1 e x=3,teremos
p(x)/Q(x)=(1-5).r(x)=-4.r(x),r(x) de 2°...r(x)=ax^2+bx+c...para x=1,teremos
p(1)/Q(1)=-4.(a.(1)^2+b.(1)+c)=-4(a+b+c)...
fazendo o mesmo para x=3...p(3)/Q(3)=(3-5)r(x)=-2(9a+3b+c)...como nao temos como determinar a,b,c em funçao dos dados do problema,nao temos como afirmar a opçao c)...
portanto o que podemos afirmar que p(x)/Q(x) é um polinomio de 3°...fica a opçao a) como a mais viavel...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio resolvido
por adauto martins » Sex Jul 15, 2016 14:48
- 0 Respostas
- 19881 Exibições
- Última mensagem por adauto martins

Sex Jul 15, 2016 14:48
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Qua Jul 20, 2016 18:35
- 0 Respostas
- 18285 Exibições
- Última mensagem por adauto martins

Qua Jul 20, 2016 18:35
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Ter Jul 26, 2016 17:43
- 0 Respostas
- 8786 Exibições
- Última mensagem por adauto martins

Ter Jul 26, 2016 17:43
Cálculo: Limites, Derivadas e Integrais
-
- exercicio resolvido
por adauto martins » Sáb Ago 13, 2016 11:28
- 0 Respostas
- 4369 Exibições
- Última mensagem por adauto martins

Sáb Ago 13, 2016 11:28
Teoria dos Números
-
- exercicio resolvido
por adauto martins » Sex Out 18, 2019 14:29
- 2 Respostas
- 8983 Exibições
- Última mensagem por adauto martins

Sex Out 18, 2019 15:42
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.