• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Jul 20, 2021 15:52

(ITA-1964)quais as possiveis raizes inteiras da equaçao x^3+4x^2+2x-4=0 ?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Ter Jul 20, 2021 16:11

soluçao

a pergunta é, possiveis raizes inteiras...que serao os dividores de {a}_{0}=-4...

D(-4)=((+/-)1,(+/-)2,(+/-)4),aqui ja responde a pergunta.discorremos mais.
fazendo uma verificaçao,ou seja,calculando p((+/-)1),p((+/-)2),p((+/-)4),encontramos p(-2)=0,logo

p(x)=(x-(-2))q(x)=(x+2).q(x),onde q(x) tera grau 2.

q(x)=P(x)/(x+2)=(x^3+4x^2+2x-4)/(x+2)=x^2+2x-2

para q(x)=0,teremos

x=-1+\sqrt[]{3}...x=-1-\sqrt[]{3} que sao raizes irracionais.assim como as raizes complexas sao em pares,assim tambem sao as raizes irracionais.logo se dado um polinomio e encontramos uma raiz do tipo

x=a+b\sqrt[]{c}...a,b,c \in Z,c\neq 0 teremos tambem

x=a-b\sqrt[]{c}...

exemplos

\sqrt[]{2},-\sqrt[]{2}...\sqrt[]{p},-\sqrt[]{p},p(primo)...

1+q\sqrt[]{p}...etc...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}