• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Sex Abr 23, 2021 15:35

(ITA-1959)mostrar se é verdadeiro

{(1+x)}^{n}\geq 1+nx

onde n é um inteiro positivo e x é qualquer numero maior ou igual a 1.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Sex Abr 23, 2021 15:55

soluçao

essa desiqualdade é conhecida como "desiqualdade de bernoulli".usa-se em maior parte a induçao finita para demonstra-la,mas aqui usarei uma simples algebra para se ter o resultado.
p/-1\prec x\preceq 0\Rightarrow 1+x\succ 0
de fato
-1\prec x \preceq 1\Rightarrow 0\prec x+1 \preceq 1

\Rightarrow x+1\succ 0

p/x\succeq 0\Rightarrow x+1\succ0

logo

{(1+x)}^{n}=(1+x).(1+x)....(1+x)\geq (1+x)+(1+x)+...+(1+x)

\succeq 1+x+x+...+x=1+nx...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Dom Abr 25, 2021 12:50

correçao

a demonstraçao acima vale para
x\succeq0
no intervalo
-1\prec x\leq 0
teriamos
{(x+1)}^{n}=(x+1).(x+1)....(x+1)\preceq (x+1)+(x+1)+...+(x+1)
o qual invalidaria a forma da demonstraçao...
quando eu tiver uma forma demonstravel dessa desiqualdade(que esta correta,e demonstravel via induçao finita)
eu a postarei...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.