por adauto martins » Ter Out 22, 2019 11:26
(UDF-universidade do distrito federal,rj-exame 1947)
calcular o volume de uma esfera,cujo circulo maximo é o circulo circunscrito a um triangulo equilatero de 4m de lado.
ps-A UDF-rj é a atual UERJ.
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Out 22, 2019 12:01
soluçao
o volume de uma esfera é dado por

logo temos que encontrar o raio do circulo circunscrito ao triangulo,que no caso o circulo esta dentro do triangul(circulo circunscrito)
![tg 30=r/2\Rightarrow r=2.tg 30=2(sen 30/cos30)
r=2(\sqrt[]{3}/2 /(1/2)=2.\sqrt[]{3} tg 30=r/2\Rightarrow r=2.tg 30=2(sen 30/cos30)
r=2(\sqrt[]{3}/2 /(1/2)=2.\sqrt[]{3}](/latexrender/pictures/d85476451c9f37d08eac7db0da160db3.png)
pois o triangulo é equilatero,e o triangulo para obtençao do raio do circulo sera um triangulo retangulo isosceles de angulo 30°,tendo como catetos r e 2,metade do lado do triangulo maior,onde o circulo esta inscrito.logo
![{V}_{esf.}=(4/3)\pi{(2.\sqrt[]{3} )}^{3}=(8/3)3\sqrt[]{3}\pi
V=8.\pi.\sqrt[]{3}... {V}_{esf.}=(4/3)\pi{(2.\sqrt[]{3} )}^{3}=(8/3)3\sqrt[]{3}\pi
V=8.\pi.\sqrt[]{3}...](/latexrender/pictures/2e8b28afc2645cf05b98ab34b643682f.png)
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Ter Out 22, 2019 13:04
uma correçao:
![{V}_{esf.}=(4/3)\pi{(2.\sqrt[]{3})}^{3}=(4/3).\pi({2})^{3}\sqrt[]{3}.\sqrt[]{3}.\sqrt[]{3}=(4/3).8.\pi.3.\sqrt[]{3}=24\pi\sqrt[]{3}... {V}_{esf.}=(4/3)\pi{(2.\sqrt[]{3})}^{3}=(4/3).\pi({2})^{3}\sqrt[]{3}.\sqrt[]{3}.\sqrt[]{3}=(4/3).8.\pi.3.\sqrt[]{3}=24\pi\sqrt[]{3}...](/latexrender/pictures/1d856d08a79a250de8bf09ca8c02371b.png)
obrigado
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.