por brumadense » Sex Mar 19, 2010 03:16
Olá colegas
Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.
Seja a função

)

R dado por f

=

. Calcule:
![f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2} f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}](/latexrender/pictures/02315716053abca173ab996ed26fafef.png)
-
brumadense
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jan 15, 2010 00:06
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Molina » Sex Mar 19, 2010 09:17
brumadense escreveu:Olá colegas
Gostaria de uma explicação de como essa função foi resolvida. Estou sentindo dificuldade em resolver funções quando aparecem com radicais. Alguém poderia me explicar como resolver quando aparece radicais, como no caso abaixo? Desde já agradeço.
Seja a função

)

R dado por f

=

. Calcule:
![f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2} f \left(\sqrt[2]{2}-1 \right)=\frac{{\left(\sqrt[2]{2}-1 \right)}^{2}-\left(\sqrt[2]{2}-1 \right)+1}{\sqrt[2]{2}-1+1}=\frac{2-2\sqrt[2]{2}+1-\sqrt[2]{2}+1+1}{\sqrt[2]{2}}=\frac{5-3\sqrt[2]{2}}{\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-3\sqrt[2]{2}.\sqrt[2]{2}}{\sqrt[2]{2}.\sqrt[2]{2}}=\frac{5\sqrt[2]{2}-6}{2}](/latexrender/pictures/02315716053abca173ab996ed26fafef.png)
Bom dia.
Dada esta função

=

queremos encontrar
![f \left(\sqrt[2]{2}-1 \right) f \left(\sqrt[2]{2}-1 \right)](/latexrender/pictures/90d35ea6766006e5e36ab952c432473a.png)
, ou seja, vamos substituir todos os x da equação por
![\sqrt[2]{2}-1 \sqrt[2]{2}-1](/latexrender/pictures/f04f8b4ee7780eec1f1bd142c7b476fd.png)
. E foi isso que foi feito.
Os procedimentos seguintes foi só algebrismo. Elevar ao quadrado, somar, subtrair, etc. Porém, o denominador da fração (parte de baixo) ficou com raiz. Quando isso acontece temos que racionalizar esta fração, ou seja, eliminar essa raiz de baixo. Para fazer isso o truque é sempre o mesmo: multiplicar pela própria raiz. Só que temos que multiplicar em cima e embaixo. E foi isso que foi feito, multiplicando por

.
Qualquer dúvida, avise!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Preciso de uma explicação
por Deko » Dom Mar 28, 2010 16:33
- 1 Respostas
- 1718 Exibições
- Última mensagem por Elcioschin

Dom Mar 28, 2010 19:07
Cálculo: Limites, Derivadas e Integrais
-
- explicação calculo
por crsglc2 » Dom Abr 04, 2010 23:21
- 1 Respostas
- 2672 Exibições
- Última mensagem por Molina

Ter Abr 06, 2010 21:58
Cálculo: Limites, Derivadas e Integrais
-
- Preciso de Explicação
por andersonvendramin28 » Ter Mai 31, 2011 11:29
- 8 Respostas
- 8344 Exibições
- Última mensagem por andersonvendramin28

Qua Jun 08, 2011 15:46
Funções
-
- Explicação da tangente
por Cleyson007 » Qua Out 17, 2012 16:48
- 3 Respostas
- 3885 Exibições
- Última mensagem por Cleyson007

Qui Out 18, 2012 09:14
Trigonometria
-
- DUVIDA- EXPLICAÇÃO
por zenildo » Qui Dez 19, 2013 12:01
- 0 Respostas
- 1076 Exibições
- Última mensagem por zenildo

Qui Dez 19, 2013 12:01
Aritmética
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.