• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problemas usando derivadas

problemas usando derivadas

Mensagempor ezidia51 » Sex Set 07, 2018 17:21

Alguém sabe como resolver estes problemas usando derivadas?
1-Uma peça de formato cilíndrico está em processo de aquecimento e, neste processo, está se dilatando. Suas dimensões estão variando da maneira que segue: quando o raio da base r=r(t) vale 8 cm , ele está aumentando a uma taxa de 1 cm/s e, neste instante, a altura vale 10 cm e está aumentando a uma taxa de 3 cm/s.

Calcule a taxa de variação do volume do cilindro neste instante. Adote pi=3

2-Num acidente ecológico em que ocorreu vazamento de óleo de um navio cargueiro, os especialistas envolvidos no evento detectaram que a mancha de óleo era de formato aproximadamente circular e que, num determinado instante, o raio desta mancha era de 300 m e aumentava a uma taxa de 20m/h. Calcule a que velocidade aumentava a área da mancha neste instante. Adote ..pi=3
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sex Set 07, 2018 22:49

1) O volume do cilindro varia em função do Raio e da Altura. O raio e a altra por sua vez variam em função do tempo.
Perceba que para achar a variação do volume no tempo, precisaremos na verdade achar a sua variação em relação ao raio e a altura.
Podemos fazer isto aplicando a regra da cadeia:

\\
\frac{d\left(V(t) \right)}{dt} = \frac{d(V\left(R(t), H(t)  \right)}{dt}\\
\\
\frac{d(V\left(R(t), H(t)  \right)}{dt} = \frac{dV}{dR}*\frac{dR}{dt}+\frac{dV}{dH}*\frac{dH}{dt}\\
\\

Como ja temos a variação do volume com o tempo e da altura com o tempo, basta avaliarmos dV/dR e dV/dH

\\
\frac{dV}{dR} = 2\pi*r*h\\
\\
\frac{dV}{dH} = \pi*r^2\\

Por fim, temos os valores de R e H no momento de observação:
\\
\frac{dV}{dt} = (2*\pi*8*10)*1cm/s + (\pi*8^2)*3cm/s = 1056cm^3/s

2)Seguindo a mesma linha do anterior, teremos:
\\
\frac{d\left(A(t) \right)}{dt} = \frac{d(A\left(R(t) \right)}{dt}\\
\\
\frac{d(A\left(R(t) \right)}{dt} = \frac{dA}{dR}*\frac{dR}{dt}\\
\\

Como ja temos a variação da area com o tempo , basta avaliarmos dA/dR

\\
\frac{dA}{dR} = 2\pi*r\\
\\

Por fim, temos os valores de R no momento de observação:
\\
\frac{dA}{dt} = (2*\pi*300)*20m/h = 36000m^2/h

Espero ter ajudado, qualquer duvida deixe msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sáb Set 08, 2018 19:47

Valeu mesmo!!!Um super muito obrigado.Agora entendi e vou praticar mais estes problemas com derivadas!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor ezidia51 » Sáb Set 08, 2018 20:57

Você poderia dar uma olhada nestes cálculos de derivada que eu fiz.Fiquei com dúvida na derivada terceira função.Obrigada
Anexos
P_20180908_195025.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Dom Set 09, 2018 00:45

1) Tua resolução está certa, mas tu marcou a alternativa errada. Se simplificar a fração dará a alternativa (a).

2) Certo

3) Certo se o "-3x^2sen(x^3)" estiver fora da resposta.

4) Certo

Bons estudos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Dom Set 09, 2018 15:15

:y: :y: :y: :y: :y: :y: :y: Super mega obrigado!!!!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Dom Set 09, 2018 15:29

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

problemas com gráfico

Mensagempor ezidia51 » Seg Set 10, 2018 19:43

Olá vc poderia me ajudar com este exercício de gráfico.Estou meia confusa em como montar os cálculos?
Anexos
P_20180910_183001.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

gráfico

Mensagempor ezidia51 » Seg Set 10, 2018 19:46

Segue aqui o gráfico referente as questões.Se vc puder me ajudar eu agradeço muito.
Anexos
P_20180910_182936.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Ter Set 11, 2018 05:00

4)
Vamos primeiro achar a relação entre os dois triangulos retangulos que destaco na figura.
Sem título.png

\\
\frac{y-2}{4} = \frac{2}{x-4}\\
\\
(y-2)(x-4) = 2*4\\
\\
yx-4y-2x+8 = 8\\
\\
y(x-4) = 2x\\
\\
y = \frac{2x}{x-4}

Agora perceba que temos 'y' em função de 'x', logo basta substituirmos esta espressão na formula da area:
\\
A(x) = \frac{xy}{2}\\
\\
A(x) = \frac{\left( \frac{2x}{x-4}\right)*x}{2}\\
\\
A(x) = \frac{x^2}{x-4}

5)
Para minimizar a area vamos utilizar a derivada primeira de A(x) e igualar a zero:
\\
\frac{dA(x)}{dx} = 0\\
\\
\frac{dA(x)}{dx} = \frac{2x(x-4)-x^2}{(x-4)^2}=\frac{x^2-8x}{(x-4)^2}\\
\\
Para\;que\;\frac{dA(x)}{dx} = 0\;\rightarrow\;x^2-8x = 0\\
\\
x^2-8x = 0\\
\\
x(x-8) = 0\\
\\
x_1=0\;\;x_2 = 8
x = 0 pode ser descartado e ficamos com o x = 8.
Este x = 8 vai ser o ponto da reta com ordenada nula (y = 0). Temos agora dois pontos (4 , 2) e (8 , 0).
Vamos achar a equação da reta que une estes pontos:
Coef. angular = (4 - 8) / (2 - 0) = -0.5
Eq. da reta: (y - 0) = -0.5 (x - 8)
Eq. da reta: y = -0.5x + 4 ou y = -x/2 + 4

Bons estudos!
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Ter Set 11, 2018 19:25

muito muito obrigada!!!Valeu!!! :y: :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Qua Set 12, 2018 04:43

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Qua Set 12, 2018 22:20

Olá vc poderia me ajudar e ver se eu fiz estes exercícios corretamente?Muito Obrigada
Anexos
P_20180912_211408.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Qui Set 13, 2018 12:55

1)
Certo, considerando que seja "-3x³" e não "-3x²" como está escrito. A alternativa, no entanto, pode ser ambigua, porque não deixa claro se está considerando o 0 um minimo local ou global. Logo convém destacar que 0 é minimo local.

2)
Errado
A função é decrescente quando sua derivada primeira é negativa e crescente quando é positiva.
f(x) = x³ - 9x² + 12
f '(x) = 3x² - 18x
Para que f '(x) < 0 (decrescente) :
3x² - 18x < 0
Como estamos tratando de uma função quadratica de concavidade voltada para cima ('a' > 0) e com Delta > 0 (Delta = 324), sabemos que os valores negativos acontecem entre as duas raizes, ou seja, no intervalo aberto (0 , 6).

3)
Certo

4)
Certo
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Qui Set 13, 2018 18:54

Muito muito obrigada!!!Vc me ajudou muito!!! :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Qui Set 13, 2018 18:57

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sex Set 14, 2018 16:05

Você poderia me ajudar com estas 3 questões porque não consegui entender o enunciado.Todas as 3 perguntas estão baseadas no enunciado da função,mas não consegui entender por causa do número 2 na chave.Obrigado
Anexos
P_20180914_145900.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sex Set 14, 2018 16:38

O enunciado só está destacando que "x = 2" não está no dominio da função. Perceba que se tentarmos jogar o valor 2 na função teremos uma divisão por 0 (zero).
Outra forma, que se acha mais comumente do enunciado é: "f R - {2} -> R" (com sinal de subtração).
Resposta: letra a

Vale ressaltar também que, embora o 2 não esteja no dominio, podemos avaliar como a função se comporta perto desse valor tomando-se o limite.
Assim que puder vejo as outras questões (escrevendo do celular).
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sex Set 14, 2018 17:55

Muito obrigado!!! :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sex Set 14, 2018 20:17

Complementando a 1ª questão:
Nos dois primeiros limites, com tendência a +infinito e menos infinito temos uma indeterminação (inf/inf e -inf/-inf).
Podemos utilizar l'Hopital para resolve-la derivando numerador e denominador. Com isso, nos dois casos chegamos ao resultado do limite igual a 2/3.
O dois outros limites, limite lateral pela direita e pela esquerda respectivamente tendendo a 2, podem ser interpretados assim:
Se pegarmos um valor ligeiramente menor que 2, digamos 1.999999999, e substituirmos na função veremos que a tendência é de atingir um valor negativo grande, ou seja, ao nos aproximarmos de 2 pela esquerda a função tenderá a -infinito. De forma semelhante ao nos aproximarmos pela direita a função tenderá a +infinito.

2) Como as alternativas afirmam quanto a inclinação da curva (crescente/decrescente), vamos avaliar o sinal da derivada primeira. Intervalos de derivada positiva indicam um intervalo crescente, e negativa intervalos decrescentes.
f '(x) = -12/(3x-6)²
O denominador (3x-6)² é sempre positivo, logo a derivada será sempre negativa e, portanto, a curva é decrescente em todo seu domínio. Veja parte dessa curva:
Sem título.png
Sem título.png (9.1 KiB) Exibido 3941 vezes


3) As alternativas aqui abordam a concavidade da curva. Como a derivada segunda f ''(x) = 8/[3(x-2)³] não possui zeros (verificar!), ou seja, possíveis inflexões da curva, vamos dividir a analise na sua indeterminação (x=2).
A concavidade é dada pelo sinal da derivada segunda, se positiva a concavidade é para cima, se negativa concavidade para baixo.
Para x<2 a derivada segunda tem valores negativos, logo concavidade para baixo.
Para x>2 a derivada segunda tem valores positivos, logo concavidade para cima.
I -> Errada
II -> Certo
III -> Certo

Qualquer duvida, deixa msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sáb Set 15, 2018 19:41

:y: :y: :y: :y: :y: muito muito obrigada!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sáb Set 15, 2018 20:34

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Ter Set 25, 2018 21:09

Olá ,você poderia olhar estes exercícios para ver se estão corretos?Obrigado
Anexos
P_20180925_200458.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Ter Set 25, 2018 22:19

1) certo
2a) Tem um erro na integração do "6x^5", fica apenas x^6 e não (x^6)/6.
2b) Aqui tu te enganou ao integrar o "cos(x)". A integral de cos(x) é sen(x) e não -sen(x). Ajuda a lembrar pensando: "Que função ao derivarmos tem como resultado cos(x)".
2c) certo
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Ter Set 25, 2018 23:00

Ah entendi!!!Muito obrigado.Então o exercício 2b ficaria sen(x)+cos(x)+C
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Ter Set 25, 2018 23:09

exato, sen(x)+cos(x)+C
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Ter Set 25, 2018 23:13

Valeu!!Um super muito obrigado!!! :y: :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor ezidia51 » Sex Set 28, 2018 15:05

Olá tudo bem?Você poderia me ajudar a resolver esses problemas envolvendo cálculo de área de gráfico?Fico muito agradecida se vc puder me ajudar.
1-Calcule a área da região abaixo do gráfico da função {5x}^{4}+{x}^{2}-1, acima do eixo das abscissas, e entre as retas verticais x=1 e x=3.

2-6-Calcule a área da região limitada pelos gráficos das funções
(Sugestão: Esboce os gráficos de f(x)=x^6 e g(x)=x^2 , determine os pontos de intersecção, marque a região A e descubra qual é o gráfico que limita A por cima e qual é o gráfico que limita A por baixo).

Os exercícios pedem que seja feito um cálculo para expressar essas áreas e eu não sei como fazer.Segue anexo os exercícios.
Anexos
P_20180928_135246.jpg
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: problemas usando derivadas

Mensagempor Gebe » Sex Set 28, 2018 21:42

A area definida por uma (ou mais funções) pode ser determinada por integração.
A integral de uma função determina a area entre a sua curva e o eixo das abscissas (quando a função é dada em "x").
ex.:
areas.png
areas.png (6.51 KiB) Exibido 3701 vezes


Observe que no segundo exemplo a integral dará um valor negativo, logo colocamos o sinal negativo na frente.
Uma das consequencias dessa ultima observação é que funções que tenham parte positiva e parte negativa ( ex.: sen(x) ), devem ser particionadas para uma correta determinação da area. Por exemplo, se tentarmos achar a area entre sen(x) de 0 a 2pi (um periodo inteiro) e o eixo "x" sem particionar previamente o seno acharemos o valor 0.

Com isso dito, a dica é, sempre que possivel, desenhe as curvas antes de começar os calculos.

1) Aqui queremos a area entre a curva dada e o eixo "x". As retas verticais mencionadas são os limites laterais desta area, ou seja, serão os limites de integração.

area1.png
area1.png (3.98 KiB) Exibido 3701 vezes


\\
Area=\int_{1}^{3} \left( 5x^4+x^2-1 \right)dx\\
\\
Area = \left[x^5+\frac{1}{3}x^3-x\right|_{1}^3\\
\\
Area = \left(3^5+\frac{1}{3}3^3-3 \right) - \left(1^5+\frac{1}{3}1^3-1 \right)\\
\\
Area = \frac{746}{3}\approx248.67

2) Perceba aqui que não é dado os limites laterais da area. Estes limites serão dados pela intersecção das duas curvas como pode ser visto no desenho abaixo.

area2.png
area2.png (8.6 KiB) Exibido 3701 vezes

obs.: f(x) em vermelho e g(x) em azul

Sabemos que a integral nos da a area entre a curva e o eixo "x", portanto a area destacada (entre as curvas) pode ser escrita como a area da curva que limita superiormente ( g(x) ) subtraindo-se a area da curva que limita inferiormente a a região destacada.
\\
Area=\int_{}^{} g(x)dx-\int_{}^{} f(x)dx\\

Para pode calcular essa area precisamos dos limites de integração. Esses limites, como já mencionado, são dados pela intersecção das curvas. Para achar achar estes valores, fazemos:
\\
g(x)=f(x)\\
\\
x^6 = x^2\\
\\
x^4 = 1\\
\\
x = \pm 1

\\
Area=\int_{-1}^{1} g(x)dx-\int_{-1}^{1} f(x)dx\\
\\
Area=\int_{-1}^{1} \left( g(x)-f(x) \right)dx\\
\\
Area=\int_{-1}^{1}\left(x^2-x^6 \right)dx\\
\\
Area=\left(\frac{1}{3}x^3-\frac{1}{7}x^7\right|_{-1}^1\\
\\
Area=\left(\frac{1}{3}1^3-\frac{1}{7}1^7 \right)-\left(\frac{1}{3}(-1)^3-\frac{1}{7}(-1)^7 \right)\\
\\
Area=\frac{8}{21}\approx0.381

Qualwuer duvida deixa msg.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: problemas usando derivadas

Mensagempor ezidia51 » Sex Set 28, 2018 22:30

Um super muito obrigado!!!Estas explicações me ajudaram muito!!! :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Próximo

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 13 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D