• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Transformação Linear.

Transformação Linear.

Mensagempor Jadiel Carlos » Seg Nov 07, 2016 00:50

Olá boa noite. Estava resolvendo um exercício de transformação linear e daí fiquei com duvida no momento em que a questão afirma que Im(T) = W, ou seja, não sei como usar essa condição pra dar continuidade na resolução do problema. Se alguém souber, desde já agradeço a ajuda.

Questão: Abaixo no formato Imagem JPEG (.jpg).
Anexos
prod_inter_base_enunc_01.jpg
Transformação Linear.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando

Re: Transformação Linear.

Mensagempor adauto martins » Qui Nov 10, 2016 15:40

uma base p/ {W}^{T} é {W}^{T}=[(0,0,1),(1,0,0),(0,1,0)],pois:
w.{w}^{T}=0,para w\in W,{w}^{T}\in {W}^{T}...{W}^{T} é base do espaço-complemento de {W}...logo:{\Re}^{3}=W(+){W}^{T}...,pois W\bigcap_{}^{}W^{T}={0}...
entao dados v \in W/v=(x+z,x+y,y-z)...u \in {W}^{T}/u=(x,y,z)...
T({\Re}^{3})=T(W(+){W}^{T})=T(W)+T({W}^{T})=IM(T)+N(T)=W+{W}^{T}=(2x+z,x+2y,y)......
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Transformação Linear.

Mensagempor adauto martins » Sáb Nov 12, 2016 10:37

uma correçao:
N(T)={u=(x,y,z)/T({W}^{T})=0}...logo:
T({\Re}^{3})=T(W)+T({W}^{T})=T(W)+0=W=v=(x+z,x+y,y-z)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Transformação Linear.

Mensagempor Jadiel Carlos » Seg Nov 21, 2016 11:18

Valeu Adauto Martins. Conseguir entender agora.
Jadiel Carlos
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 07, 2016 00:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: