Seção para postagens de problemas matemáticos do cotidiano, reportagens, casos interessantes, polêmicos ou curiosos.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por EdegarRodrigues » Sex Mar 05, 2010 23:16
Ola a todos,
segue exercicio de prova de meu filho (primeira prova da quinta serie, logo no comeco do ano, entao material da quarta serie)
Macarrao: 100 grs
Tempero: 10 grs
Quantas vezes o peso do macarrao eh maior que o do tempero?
meu filho respondeu nove, a professora diz que eh 10, mas quando lhe perguntei:
Quantas gramas o peso do macarrao eh maior que o do tempero? praticamente a mesma pergunta, mudamos de vezes para gramas..
ela respondeu 90, logo se o macarrao eh 90 grms maior que o tempero ele nao eh 9 vezes maior?
se ela estive perguntado:
Quantas vezes o peso do macarrao equivale ou do tempero? ai concordo em 10, mas se entendi a pergunta, ela perguntou quantas vezes eh maior
Sera que estou pensando errado?
Agradeço a ajuda
-
EdegarRodrigues
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mar 05, 2010 22:40
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Cleyson007 » Sáb Mar 06, 2010 12:19
Bom dia Edegar Rodrigues!
O peso do macarrão é 10 vezes maior que o peso do tempero. (pois 10 x 10 = 100)
O peso do macarrão é 90 g maior que o tempero (100 - 10 = 90)
Edegar, você está fazendo confusão na interpretação do problema.. (de um lado, foi perguntado quantas vezes o peso do macarrão é maior que o peso do tempero. Do outro, qual a diferença entre o peso dos mesmos).
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Problemas do Cotidiano
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Série] Calcular valor de série tendo outra como referência
por robmenas » Dom Abr 07, 2019 14:35
- 0 Respostas
- 9186 Exibições
- Última mensagem por robmenas

Dom Abr 07, 2019 14:35
Sequências
-
- Duvida em série de Fourier
por luisbaixo » Sex Mai 09, 2014 01:22
- 7 Respostas
- 4817 Exibições
- Última mensagem por Russman

Sáb Mai 10, 2014 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [série de Euler / problema da Basiléia] Série de Fourier
por Burnys » Qua Jul 16, 2008 14:34
- 4 Respostas
- 9080 Exibições
- Última mensagem por admin

Qui Jul 17, 2008 00:33
Sequências
-
- [Séries] Dúvida sobre divergência de série
por leticia_08 » Sáb Abr 19, 2014 20:12
- 7 Respostas
- 4416 Exibições
- Última mensagem por Russman

Dom Abr 20, 2014 13:42
Sequências
-
- Duvida de Série pelo teste da integral
por douglasnickson » Sáb Ago 20, 2016 13:41
- 0 Respostas
- 4068 Exibições
- Última mensagem por douglasnickson

Sáb Ago 20, 2016 13:41
Sequências
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.