por bhs » Sáb Abr 23, 2016 20:40
Como resolver limite deste ?
![\lim_{2}\frac{\sqrt[4]{{x}^{3}}-\sqrt[4]{{2}^{3}}}{x-2} \lim_{2}\frac{\sqrt[4]{{x}^{3}}-\sqrt[4]{{2}^{3}}}{x-2}](/latexrender/pictures/5d2b7903927c98e0bed285f98f4c8131.png)
-
bhs
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 18, 2016 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por DanielFerreira » Dom Abr 24, 2016 00:09
Olá
bhs, seja bem-vindo(a)!!
Para resolver esse limite, devemos racionalizar o numerador, veja este tópico:
http://www.ajudamatematica.com/viewtopic.php?f=120&t=18174. É bem parecido!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por bhs » Dom Abr 24, 2016 21:17
Obrigado Daniel mais ainda não entendi pois queria saber mais se teria alguma diferença pois se tivesse isto raiz quadrada
![\lim_{2}\frac{\sqrt[]{x}-\sqrt[]{2}}{x-2}=\frac{\sqrt[]{x}-\sqrt[]{2}}{x-2}.\frac{\sqrt[]{x}+\sqrt[]{2}}{\sqrt[]{x}+\sqrt[]{2}}= \frac{(\left x-2 \right)}{(\left x-2 \right).\left(\sqrt[]{x}+\sqrt[]{2} \right)} \lim_{2}\frac{\sqrt[]{x}-\sqrt[]{2}}{x-2}=\frac{\sqrt[]{x}-\sqrt[]{2}}{x-2}.\frac{\sqrt[]{x}+\sqrt[]{2}}{\sqrt[]{x}+\sqrt[]{2}}= \frac{(\left x-2 \right)}{(\left x-2 \right).\left(\sqrt[]{x}+\sqrt[]{2} \right)}](/latexrender/pictures/9ae46598a9658efebaeaac3b651a4e4c.png)
se tivesse raiz cúbica seria daquela forma do link que enviou. E raiz quarta como seria não achei nenhum material que atenda esta raiz quarta ?
-
bhs
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 18, 2016 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por DanielFerreira » Dom Abr 24, 2016 23:38
Note que:

Com efeito,
![\\ \sqrt[4]{x^3} - \sqrt[4]{2^3} = \\\\ x^{\frac{3}{4}} - x^{\frac{3}{4}} = \\\\ \left ( x^{\frac{^1}{4}} \right )^3 - \left ( 2^{\frac{^1}{4}} \right )^3 = \\\\ \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{2}{4}} + (2x)^{\frac{1}{4}} + 2^{\frac{2}{4}} \right ) = \\\\ \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right ) \\ \sqrt[4]{x^3} - \sqrt[4]{2^3} = \\\\ x^{\frac{3}{4}} - x^{\frac{3}{4}} = \\\\ \left ( x^{\frac{^1}{4}} \right )^3 - \left ( 2^{\frac{^1}{4}} \right )^3 = \\\\ \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{2}{4}} + (2x)^{\frac{1}{4}} + 2^{\frac{2}{4}} \right ) = \\\\ \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right )](/latexrender/pictures/2bce4f2ca340689fe0e85df45aeafb09.png)
Agora, observe que
![\\ x - 2 = \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left [ (x^{\frac{1}{4}})^3 + (x^{\frac{1}{4}})^2 \cdot (2^{\frac{1}{4}})^1 + (x^{\frac{1}{4}})^1 \cdot (2^{\frac{1}{4}})^2 + (2^{\frac{1}{4}})^3 \right ] = \\\\\\ x - 2 = \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right ) \\ x - 2 = \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left [ (x^{\frac{1}{4}})^3 + (x^{\frac{1}{4}})^2 \cdot (2^{\frac{1}{4}})^1 + (x^{\frac{1}{4}})^1 \cdot (2^{\frac{1}{4}})^2 + (2^{\frac{1}{4}})^3 \right ] = \\\\\\ x - 2 = \left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right )](/latexrender/pictures/059795368c2336262062115be937c13a.png)
Por fim, basta resolver o limite abaixo:
![\\ \lim_{x \to 2} \frac{\sqrt[4]{x^3} - \sqrt[4]{2^3}}{x - 2} = \\\\\\ \lim_{x \to 2} \frac{\left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right )}{\left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right )} = \\\\\\ \lim_{x \to 2} \frac{\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right )}{\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right )} = \\\\\\ (...) \\ \boxed{\frac{3}{4\sqrt[4]{2}}} \\ \lim_{x \to 2} \frac{\sqrt[4]{x^3} - \sqrt[4]{2^3}}{x - 2} = \\\\\\ \lim_{x \to 2} \frac{\left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right )}{\left ( x^{\frac{1}{4}} - 2^{\frac{1}{4}} \right )\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right )} = \\\\\\ \lim_{x \to 2} \frac{\left ( x^{\frac{1}{2}} + (2x)^{\frac{1}{4}} + 2^{\frac{1}{2}} \right )}{\left ( x^{\frac{3}{4}} + x^{\frac{1}{2}} \cdot 2^{\frac{1}{4}} + x^{\frac{1}{4}} \cdot 2^{\frac{1}{2}} + 2^{\frac{3}{4}} \right )} = \\\\\\ (...) \\ \boxed{\frac{3}{4\sqrt[4]{2}}}](/latexrender/pictures/6c9a14e98ec2615dc684b55ad230807b.png)
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por bhs » Seg Abr 25, 2016 17:01
ajudou muito ,agora entendi, muito obrigado !
-
bhs
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Mar 18, 2016 15:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Como resolver raiz dentro de raiz ?
por natyncb » Qui Abr 12, 2012 00:31
- 10 Respostas
- 13387 Exibições
- Última mensagem por LuizAquino

Sex Ago 24, 2012 07:50
Cálculo: Limites, Derivadas e Integrais
-
- [limites] reciso de ajuda nessa questão de limites raiz quad
por alexia » Ter Nov 15, 2011 19:55
- 1 Respostas
- 5005 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:16
Cálculo: Limites, Derivadas e Integrais
-
- Limites com raiz no numerador
por liliars » Qua Jul 07, 2010 16:34
- 4 Respostas
- 12963 Exibições
- Última mensagem por elinesena

Sáb Nov 24, 2012 15:22
Cálculo: Limites, Derivadas e Integrais
-
- [Limites de funções com raíz]
por yakini » Dom Fev 10, 2013 11:32
- 2 Respostas
- 1786 Exibições
- Última mensagem por yakini

Dom Fev 10, 2013 16:17
Cálculo: Limites, Derivadas e Integrais
-
- [Limites envolvendo Raiz]
por jeferson lopes » Ter Mar 26, 2013 12:14
- 1 Respostas
- 1484 Exibições
- Última mensagem por e8group

Ter Mar 26, 2013 13:02
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.