por Toni » Qua Dez 30, 2015 15:21
Olá gente! Tentei de todas as formas montar uma equação para o problema abaixo, mas não conseguir de jeito nenhum. Por favor, me ajudem a saber como interpretar e como montar a equação.
Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais.
Verificou-se ao final, que para arcar com todas as despesas, faltavam R$ 510,00, e 5 novas pessoas haviam ingressado no grupo.
No acerto foi decidido que a despesa total seria dividida em partes iguais pelas 55 pessoas. Quem não havia contribuído pagaria a sua parte, e
cada uma das 50 pessoas do grupo inicial deveria contribuir com mais R$ 7,00.
De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
-
Toni
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Dez 30, 2015 15:10
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por DanielFerreira » Dom Fev 07, 2016 20:46
Olá
Toni, seja bem-vindo!!
Se considerarmos

o valor previsto a ser pago pelas 50 pessoas, então podemos concluir que a quantia a ser paga por cada uma delas é dada por

.
Mas, de acordo com o enunciado, devemos acrescentar R$ 510,00 e 5 pessoas às despesas. Aplicando o mesmo raciocínio acima, temos que: o valor gasto fora

, portanto, cada uma dessas pessoas deverá arcar com

.
Por fim, fazemos: 50 . (valor gasto por cada integrante do grupo inicial + R$ 7,00) + 5 . (valor gasto por cada integrante do NOVO grupo) = valor total gasto
Matematicamente,

.
Tente concluir o exercício. A propósito, deve encontrar
R$ 32,00 como resposta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problema de 1° grau
por heroncius » Sex Set 07, 2007 11:44
- 2 Respostas
- 5753 Exibições
- Última mensagem por heroncius

Sáb Set 08, 2007 20:52
Sistemas de Equações
-
- problema 1° grau
por heroncius » Dom Set 23, 2007 19:43
- 1 Respostas
- 2245 Exibições
- Última mensagem por admin

Seg Set 24, 2007 01:31
Equações
-
- problema de 1º grau
por malbec » Seg Set 03, 2012 15:51
- 1 Respostas
- 1640 Exibições
- Última mensagem por Russman

Seg Set 03, 2012 16:50
Aritmética
-
- problema do 1º grau
por malbec » Qui Nov 29, 2012 10:09
- 1 Respostas
- 1606 Exibições
- Última mensagem por Cleyson007

Qui Nov 29, 2012 10:55
Aritmética
-
- Problema do segundo grau
por Alessandra Cezario » Seg Mai 02, 2011 16:52
- 1 Respostas
- 2961 Exibições
- Última mensagem por TheoFerraz

Seg Mai 02, 2011 17:29
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.