por apotema2010 » Sex Fev 26, 2010 17:22
Um atleta corre sempre 500m a mais do que no dia anterior. Sabendo-se que no final de 15 dias ele correu um total de 67500m, o número de metros percorridos no 3º dia foi:
a1,a2=a1+500, a3=a2+500...a15=67500
r=500
uso a fórmula da soma?? como??
Sn=n(a1+an)/2
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por Cleyson007 » Sáb Fev 27, 2010 11:15
Bom dia Fantini!
Fantini, usando a fórmula do termo geral da PA, encontrei:


Você encontrou

O valor que encontrei para o termo geral está errado?
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por apotema2010 » Sáb Fev 27, 2010 22:26
De onde veio o 7000?? Detalhe para q eu possa entender, obrigada.
-
apotema2010
- Usuário Dedicado

-
- Mensagens: 41
- Registrado em: Qua Fev 17, 2010 14:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por MarceloFantini » Dom Fev 28, 2010 02:50
Boa noite!
Cleyson, percebi que estava errado. O seu resultado é o certo. Peço desculpas ao apotema, use o resultado do cleyson. No caso então ficaria assim:

Resolvendo, vai encontrar que

, e que então ele correu

no terceiro dia.
Novamente, peço desculpas.
Um abraço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Cleyson007 » Dom Fev 28, 2010 08:50
Bom dia apotema2010 e Fantini!
Fantini, é comum acontecerem os erros (uma vez que somos seres humanos).. sua ajuda é muito mais importante!
apotema2010, veja de onde veio o 7000:




Perceba que o
7000 veio da multiplicação (14)(500) --> número de termos menos 1 que multiplica a razão.
Comente qualquer dúvida
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Progressões
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Soma dos termos de uma PA
por 404040 » Dom Out 17, 2010 21:39
- 2 Respostas
- 3372 Exibições
- Última mensagem por 404040

Seg Out 18, 2010 17:55
Progressões
-
- Soma de termos P.A
por lucas7 » Seg Jun 27, 2011 18:34
- 1 Respostas
- 1567 Exibições
- Última mensagem por Neperiano

Seg Jun 27, 2011 19:37
Progressões
-
- [Soma n termos ] mostre que ....
por e8group » Qui Nov 08, 2012 19:08
- 3 Respostas
- 1840 Exibições
- Última mensagem por e8group

Qui Nov 08, 2012 20:32
Progressões
-
- [P.A] DETERMINAR A SOMA ODS 60 PRIMEIROS TERMOS
por ramonalado » Ter Mar 12, 2013 23:35
- 3 Respostas
- 11480 Exibições
- Última mensagem por Russman

Qua Mar 13, 2013 22:46
Progressões
-
- [retas perpendiculares] soma dos termos independentes
por JKS » Qua Ago 01, 2012 13:36
- 2 Respostas
- 3034 Exibições
- Última mensagem por JKS

Qua Ago 08, 2012 15:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.