• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor ViniciusAlmeida » Seg Mai 04, 2015 09:24

Calcular o limite:

Imagem

Eu tentei dividir o numerador e o denominador por x:
Imagem

Mas aplicando a propriedade tanto numerador quanto denominador vão zerar e o gabarito é +infinito
Qual meu erro?
ViniciusAlmeida
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Seg Fev 09, 2015 12:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor adauto martins » Ter Mai 05, 2015 19:13

L=\lim_{x\rightarrow -\infty}x.(\sqrt[]{1+2/{x}^{2}}-1)=-\infty.0,q. eh uma indeterminaçao...logo vamos usar a regra de l'hospital...podemoas fazer assim...L=\lim_{x\rightarrow -\infty}(\sqrt[]{1+2/{x}^{2}}-1)/(1/x)q. ficaria...L=0/0,apartir dai e fazer...L=\lim_{x\rightarrow -\infty}f'/g'=L=\lim_{x\rightarrow -\infty}f''/g''=...,,onde,f(x)=\sqrt[]{1+2/{x}^{2}}-1,g(x)=1/xir derivando ate achar um valor fixo...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.