• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite de funções

Limite de funções

Mensagempor jeremiashenrique » Ter Abr 21, 2015 12:16

Pessoal, novamente estou aqui pedindo ajuda sobre esse conteúdo. Pensei que tinha entendido alguma coisa, mas olhando essas questões mais enroladas percebi que não entendi nada. Eu faço Administração, mas praticamente estamos sem professor, pois ele não esta recebendo o pagamento dele, minha turma inteira esta com dificuldades nisso. Eu peço que se por gentileza vcs responderem a questão, façam uma gentileza maior ainda que é comentar, me ensinar. Obrigado!
Anexos
questoes 1 a 5 limites.jpg
limites de funções
jeremiashenrique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 17, 2015 15:55
Formação Escolar: GRADUAÇÃO
Área/Curso: administração de empresas
Andamento: cursando

Re: Limite de funções

Mensagempor adauto martins » Qua Abr 22, 2015 20:43

1)
vou fazer a primeira,as outras sao semelhantes...
p/valores maiores ou igual a 2,diz q. o limite p/ x indo ao ponto 2,sera:
x\rightarrow {2}^{+}\Rightarrow L=\lim_{x\rightarrow {2}^{+}}f(x)=7.2-2=12...
p/valores menores q. 2,x\rightarrow {2}^{-}\Rightarrow L=\lim_{x\rightarrow {2}^{-}}f(x)={2}^{2}-2.2+1=1...
como os limites laterais no ponto 2 sao diferentes, entao nao existe L=\lim_{x\rightarrow {2}}f(x)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Limite de funções

Mensagempor jeremiashenrique » Qui Abr 23, 2015 00:18

valeu
jeremiashenrique
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 17, 2015 15:55
Formação Escolar: GRADUAÇÃO
Área/Curso: administração de empresas
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59