• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite com raízes] - É possível calcular sem usar l'Hopital

[Limite com raízes] - É possível calcular sem usar l'Hopital

Mensagempor Brunorp » Ter Mar 31, 2015 21:54

\lim_{x\rightarrow+\infty}\frac{\sqrt[]{{x}^{2}-3}}{\sqrt[3]{{x}^{3}+1}}
Brunorp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mar 24, 2015 08:46
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: [Limite com raízes] - É possível calcular sem usar l'Hop

Mensagempor adauto martins » Qui Abr 02, 2015 19:26

L=\lim_{x\rightarrow \infty}x\sqrt[]{1-3/{x}^{2}}/x\sqrt[3]{1+1/{x}^{3}}=\lim_{x\rightarrow\infty}\sqrt[]{1-3/{x}^{2}}/\sqrt[3]{1+1/{x}^{3}}=1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.