• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de expressão

Simplificação de expressão

Mensagempor Cleyson007 » Qui Jan 14, 2010 22:13

Boa noite!

Simplifique a expressão:

\frac{(n+2)!+(n+1)(n-1)!}{(n+1)(n-1)!}

Pensei em dois meios de resolver, mas nenhum deles está de acordo com o gabarito.

Primeiro método
: (Cortar o (n+1)(n-1)! que aparece no numerador e no denominador).

\frac{(n+2)!}{(n+1)(n-1)!}

\frac{(n+2)(n+1)!}{(n+1)(n-1)!}

Cortando o (n+1)! que aparece no numerador e no denominador, encontro como resposta:

\frac{n+2}{n-1}

Segundo método:

\frac{(n+2)(n+1)!+(n+1)(n-1)!}{(n+1)(n-1)!}

Corto o (n+1)! do numerador com o do denominador e, da mesma forma, corto também o (n-1)!.

Encontrando como resposta:

n+2+n+1

2n+3

Quanto as duas resoluções, o que estou querendo saber é onde se encontra o (s) erro (s) (uma vez que a resposta não bateu com o gabarito).


Resposta do gabarito: (n+1)²

Agradeço a atenção e ajuda!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Simplificação de expressão

Mensagempor MarceloFantini » Sex Jan 15, 2010 00:41

Boa noite Cleyson!

Achei muito bonita a questão. Vamos à resolução:

\frac{(n+2)! + (n+1)(n-1)!}{(n+1)(n-1)!}

\frac{(n+2)(n+1)n(n-1)! + (n^{2} -1)! }{ (n^{2} -1)!}

\frac{(n^{2} -1)!(n^2 +2n+1)}{(n^2-1)!}

{(n+1)}^{2}

Espero ter ajudado.

Um abraço.

P.S.: Como fez o LaTeX com as letras grandes? Não consegui.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Simplificação de expressão

Mensagempor Cleyson007 » Sáb Jan 16, 2010 11:36

Bom dia Fantini!

Fantini, porque o (n+2)! foi desenvolvido até o (n-1)! e não até o (n+1)!?

Por favor, explique todo o processo de maneira bem detalhada para que eu entenda, ok?

Quanto ao uso do LaTeX, não fiz nada de anormal para que as letras saíssem um pouco maior *-) (Quando postei a questão, estava usando o Ubuntu, mas creio que não seja isso.)

Agradeço sua ajuda!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Simplificação de expressão

Mensagempor MarceloFantini » Sáb Jan 16, 2010 19:12

Boa tarde Cleyson!

Vou primeiro analisar os métodos que você usou, mostrar onde errou e depois explicar o meu, OK?

Seu primeiro método: cortar o (n+1)(n-1)! que aparece no numerador e no denominador.

\frac{(n+2)!}{(n+1)(n-1)!} + \frac{(n+1)(n-1)!}{(n+1)(n-1)!}

\frac{(n+2)!}{(n+1)(n-1)!} + 1

Lembre-se que quando você tem uma fração com soma no numerador é a mesma coisa que duas frações com o mesmo denominador: \frac{3+4}{7} = \frac{3}{7} + \frac{4}{7}

Seu segundo método: cortar o (n+1)! do numerador com o do denominador e, da mesma forma, cortar também o (n-1)!.

\frac{(n+2)(n+1)!}{(n+1)(n-1)!} + \frac{(n+1)(n-1)!}{(n+1)(n-1)!}

Note que no denominador na verdade não é um fatorial da forma que está, pois se fosse deveria ser: (n+1)n(n-1)!. Porque na fração do lado direito podemos simplificar? Porque é como se fosse \frac{5}{5}. Não corremos o risco de dividir por zero.

Agora, sabendo que o fatorial é produto inteiro, dá pra entender porque eu abri até o (n-1)!. Vou partir da última linha acima:

\frac{(n+2)(n+1)n(n-1)!}{(n+1)(n-1)!} + 1

\frac{(n+2)n(n+1)(n-1)!}{(n+1)(n-1)!} +1

Eu apenas reorganizei pra mostrar porque agora podemos "cortar":

(n+2)n +1

n^{2} +2n +1

(n+1)^{2}

Espero ter ajudado agora.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?