• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida resolução de um limite

duvida resolução de um limite

Mensagempor Sara123 » Sex Fev 20, 2015 14:43

ln((x-1)^2)/x
limite desta expressão quendo x tende para menos infinito.
obrigada
Sara123
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Fev 20, 2015 14:37
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: ciencias
Andamento: cursando

Re: duvida resolução de um limite

Mensagempor adauto martins » Sáb Fev 21, 2015 15:24

\lim_{x\rightarrow -\infty}ln({1-x})^{2x}=\lim_{x\rightarrow -\infty}ln(1+(-x)^{-2x)}...faz-se y=-x,x\rightarrow -\infty,y\rightarrow \infty...logo \lim_{y\rightarrow \infty}ln({1+y}^{y})^{2}=ln(\lim_{y\rightarrow\infty}(({1+y})^{y})^{2}=ln{e}^{2}=2
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: duvida resolução de um limite

Mensagempor adauto martins » Dom Fev 22, 2015 12:39

mais uma correçao:
L=\lim_{x\rightarrow -\infty}ln({x-1})^{2}/x=\lim_{x\rightarrow-\infty}ln(({x-1})^{1/x})^{2}...faz-se x=-y,ai teremos q. x\rightarrow -\infty,y\rightarrow  \inf,entao L=\lim_{y\rightarrow \infty}ln(-({y+1}))^{2}})^{-1/y}=\lim_{y\rightarrow \infty}ln(({y+1})^{1/y})^{-2}=ln (\lim_{y\rightarrow \infty}({1+y})^{1/y})^{-2}=ln{e}^{-2}=-2...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.