• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivada Dy/Dx] Questão

[Derivada Dy/Dx] Questão

Mensagempor iceman » Sáb Nov 22, 2014 13:44

Sex^2+xy+y^2=1,encontre \frac{Dy}{Dx}

Agradeço pela ajuda! :)
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor adauto martins » Sáb Nov 22, 2014 15:37

{y}^{2}+x.y+({x}^{2}-1)=0...y=-x+\sqrt[]{4-3x}/2,ou y=-x-\sqrt[]{4-3x}/2
1)dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x})
2)dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x})
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor iceman » Sáb Nov 22, 2014 16:08

adauto martins escreveu:{y}^{2}+x.y+({x}^{2}-1)=0...y=-x+\sqrt[]{4-3x}/2,ou y=-x-\sqrt[]{4-3x}/2
1)dy/dx=-1+((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}+3)/(\sqrt[]{4-3x})
2)dy/dx=-1-((3/4)/\sqrt[]{4-3x}))=(-4\sqrt[]{4-3x}-3)/(\sqrt[]{4-3x})


entendi nada
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Derivada Dy/Dx] Questão

Mensagempor Cleyson007 » Sáb Nov 22, 2014 18:51

Boa tarde iceman!

Utilizando derivação implícita. Veja:

2x+y+x\left(\frac{dy}{dx} \right)+2y\left(\frac{dy}{dx}\right)=0

Colocando o \left(\frac{dy}{dx}\right) em evidência, temos:

\left(\frac{dy}{dx}\right)(x+2y)=-2x-y

Logo, \left(\frac{dy}{dx}\right)=\frac{-2x-y}{x+2y}

Comente qualquer dúvida :y:
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: [Derivada Dy/Dx] Questão

Mensagempor adauto martins » Dom Nov 23, 2014 12:36

a soluçao do cleyson e a correta...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.