• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Regra da Cadeia - Parte Grifada

Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Ter Nov 04, 2014 16:47

Se z = f(x,y), onde x = r² + s² e y = 2rs, encontre \frac{\partial^2 z}{\partial r\partial s}.

Alguém me esclarece da passagem grifada em vermelho?

Imagem
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Russman » Ter Nov 04, 2014 22:54

Primeiramente, a resolução separa as derivadas de modo que

\frac{\partial^2 z }{\partial r \partial s}= \frac{\partial }{\partial r}\left ( \frac{\partial z}{\partial s} \right ).

Mas, como
\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s},

então

\frac{\partial }{\partial r}\left ( \frac{\partial z}{\partial s} \right ) = \frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right )

que, pela regra da soma e do produto, fica

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right )\right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right )\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

Agora, como

\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial r}

então

\frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right ) = \frac{\partial^2 z }{\partial x^2}\frac{\partial x }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial y}{\partial r}

e

\frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right ) = \frac{\partial^2 z }{\partial y^2}\frac{\partial y }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial x}{\partial r}.

Portanto,

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial^2 z }{\partial x^2}\frac{\partial x }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial y}{\partial r} \right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial^2 z }{\partial y^2}\frac{\partial y }{\partial r}+\frac{\partial^2 z}{\partial x \partial y }\frac{\partial x}{\partial r}\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

e, enfim,

\frac{\partial^2 z }{\partial r \partial s} = \frac{\partial^2 z }{\partial x^2} \left (\frac{\partial x }{\partial s} \frac{\partial x }{\partial r} \right ) +\frac{\partial z }{\partial x}  \left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) + \left \frac{\partial^2 z}{\partial x \partial y } \left ( \frac{\partial x}{\partial s}\frac{\partial y}{\partial r}+\frac{\partial y}{\partial s}\frac{\partial x}{\partial r} \right )  +\frac{\partial z }{\partial y}  \left ( \frac{\partial^2 y }{\partial  s \partial r}\right ) + \frac{\partial^2 z }{\partial y^2} \left (\frac{\partial y }{\partial s} \frac{\partial y }{\partial r} \right )

Os termos entre parenteses são calculáveis pois é dada a forma explícita das funções.
Editado pela última vez por Russman em Qua Nov 05, 2014 01:08, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Ter Nov 04, 2014 23:30

Pode me esclarecer essa parte por favor Russman?

Russman escreveu:
que, pela regra da soma e do produto, fica

\frac{\partial^2 z }{\partial r \partial s} = \left (\frac{\partial x }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial x} \right )\right ] +\left (\frac{\partial z }{\partial x}  \right )\left (   \frac{\partial^2 x }{\partial  s \partial r} \rig\right ) +\left (\frac{\partial y }{\partial s}  \right )\left [ \frac{\partial }{\partial r} \left ( \frac{\partial z }{\partial y} \right )\right ] +\left (\frac{\partial z }{\partial y}  \right )\left ( \frac{\partial^2 y }{\partial  s \partial r}\right )

A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Russman » Qua Nov 05, 2014 01:23

Primeiro, pela regra da soma

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}+\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right ) = \frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}\right)+\frac{\partial }{\partial r} \left(\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}   \right )

e, depois, pela regra do produto em casa parcela:

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial x}\frac{\partial x}{\partial s}\right)  = \left (\frac{\partial x}{\partial s}  \right )\left [ \frac{\partial }{\partial r}\left (\frac{\partial z}{\partial x}  \right ) \right ]  + \left (\frac{\partial z}{\partial x}  \right ) \left (\frac{\partial^2 x}{\partial r \partial s}
  \right )

\frac{\partial }{\partial r}  \left (\frac{\partial z}{\partial y}\frac{\partial y}{\partial s}\right)  = \left (\frac{\partial y}{\partial s}  \right ) \left[ \frac{\partial }{\partial r}\left (\frac{\partial z}{\partial y}  \right )  \right] + \left (\frac{\partial z}{\partial y}  \right ) \left (\frac{\partial^2 y}{\partial r \partial s}
  \right )

Agora basta somar. Mais claro?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Regra da Cadeia - Parte Grifada

Mensagempor Cleyson007 » Qua Nov 05, 2014 12:39

Obrigado Russman!

Agora ficou mais claro :)
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.