por juliohenriquelima14 » Ter Nov 04, 2014 11:24
Bom dia pessoal!
Sou novo aqui no fórum, por isso ainda estou meio perdido. Primeiramente me desculpem se houver algum equivoco na postagem.
Pois bem, tenho a seguinte questão de indução matemática para resolver, consegui chegar tranquilo até o terceiro passo. Lá tem uma parte, inclusive
eu até destaquei no anexo. Eu venho pedir a ajuda de vocês para que possam analisar meu feito e fazer a devida correção se caso precisar.
Obrigado pela atenção de todos.
- Anexos
-

- inducMatematica
-
juliohenriquelima14
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Nov 01, 2014 09:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema da Informação
- Andamento: cursando
por Russman » Ter Nov 04, 2014 13:53
Esta bastante confuso de entender o que você quer/está fazendo. Explique o problema.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por juliohenriquelima14 » Ter Nov 04, 2014 14:07
Boa tarde amigo!
Eu preciso provar por induçao a validação a equação acima
1*1+2*2¹+3*2²+...+n.2^n-1 = 1+(n-1)*2^n
Eu tenho que provar que o resultado do segundo passo vai ser igual ao resultado do terceiro passo.
Só que é exatamente onde eu estou me confundindo não consigo resolver a parte do anexo que está destacada.
-
juliohenriquelima14
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Nov 01, 2014 09:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema da Informação
- Andamento: cursando
por juliohenriquelima14 » Ter Nov 04, 2014 14:08
Tentei fazer da forma acima como está no anexo, mas não sei se está correto.
-
juliohenriquelima14
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Nov 01, 2014 09:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema da Informação
- Andamento: cursando
por Russman » Ter Nov 04, 2014 15:55
Agora sim! (:
A afirmação que queremos provar é

Vou chamar

.
Bem, o 1° passo da prova por indução é verificar que( como a soma começa em

) a afirmação é verdadeira para

. De fato,

Perfeito. Agora precisamos mostrar que a afirmação é válida para N+1.
Veja que

Mas, por hipótese,

. Assim,

Daí, trocando N+1 por N temos

que é a hipótese inicial.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Russman » Ter Nov 04, 2014 16:09
Mais um comentário.
Não é difícil mostrar que , de fato,

.
Considere as somas

e

.
OBS: A sua soma de interesse é

Note que

ou seja,

.
Assim, como sabemos que

, (não nos preocupemos com o caso x=1), então
![S(N,x) = \frac{\partial }{\partial x} \frac{x(x^N-1)}{x-1} = \frac{1}{(x-1)^2} [x^N(N(x-1)-1)+1] S(N,x) = \frac{\partial }{\partial x} \frac{x(x^N-1)}{x-1} = \frac{1}{(x-1)^2} [x^N(N(x-1)-1)+1]](/latexrender/pictures/6d4d4a5f31a6b5daa94da51f0ecc3ab6.png)
Daí, fazendo

temos
![S(N,x=2) = \frac{1}{(2-1)^2} [2^N(N(2-1)-1)+1] = 1. [2^N(N.1-1)+1)] = 2^N(N-1) + 1 S(N,x=2) = \frac{1}{(2-1)^2} [2^N(N(2-1)-1)+1] = 1. [2^N(N.1-1)+1)] = 2^N(N-1) + 1](/latexrender/pictures/e4a838575b78fb29334c8c0332adc5bc.png)
que é a afirmação que você gostaria de provar por indução.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por juliohenriquelima14 » Ter Nov 04, 2014 16:28
Bom!!! É isso mesmo que a questão pede. Muito bom, com vocês consegui clarear bastante o entendimento.
Muito grato!
-
juliohenriquelima14
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sáb Nov 01, 2014 09:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Sistema da Informação
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivadas]Duvida nessa questão
por Flavio50 » Dom Abr 19, 2015 12:45
- 2 Respostas
- 1783 Exibições
- Última mensagem por Flavio50

Seg Abr 27, 2015 13:47
Cálculo: Limites, Derivadas e Integrais
-
- [Método de Newton] - Duvida nessa questão
por zifles2012 » Seg Set 17, 2012 16:13
- 1 Respostas
- 2049 Exibições
- Última mensagem por LuizAquino

Seg Set 17, 2012 19:55
Cálculo Numérico e Aplicações
-
- ajuda nessa questão
por zenildo » Dom Jun 05, 2016 23:36
- 4 Respostas
- 4758 Exibições
- Última mensagem por Thiago1986Iz

Dom Jul 17, 2016 17:07
Trigonometria
-
- [porcentagem] Ajudem nessa questão?
por amanda s » Sex Nov 15, 2013 20:20
- 2 Respostas
- 3364 Exibições
- Última mensagem por nakagumahissao

Sáb Nov 16, 2013 01:04
Conversão de Unidades
-
- [logica] Ajudem nessa questão
por amanda s » Sáb Nov 16, 2013 09:56
- 1 Respostas
- 1508 Exibições
- Última mensagem por nakagumahissao

Sáb Nov 16, 2013 14:56
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.