• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[CIRCUNFERÊNCIA]

[CIRCUNFERÊNCIA]

Mensagempor Lais-Lima » Seg Out 27, 2014 16:15

As circunferências da figura têm raios iguais a 5, seus centros estão na reta s e a circunferência de centro M tangencia as outras duas. A reta t é tangente à circunferência de centro N e passa pelo ponto A, em que a reta s intersecta a circunferência de centro L. Calcule o comprimento da corda BC, que a reta t determina na circunferência de centro M.


Formei o triângulo ATN, retângulo em T.
Sei que o lado AN mede 25 e o lado TN mede 5.
25² = 5² + AT²
625 - 25 = AT²
AT = \sqrt[]{}600 = 10\sqrt[]{}6


E agora?

O gabarito é BC = 8.
Anexos
10711712_918628614844169_1045723409_n.jpg
Lais-Lima
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Set 13, 2014 12:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [CIRCUNFERÊNCIA]

Mensagempor adauto martins » Qui Out 30, 2014 11:39

seja \alphao angulo mais agulo do triang.ATN,logo
tg(\alpha)=5/25=1/5...temos q. AB.AC=10.20=200...
vamos tomar o triang.ACM, e aplicar a lei dos cossenos,entao...
{5}^{2}={15}^{2}+{AC}^{2}-2.15.ACcos\alpha=225+{AC}^{2}-30.AC.cos\alpha...
temos q. tg\alpha=1/5\Rightarrow sen\alpha=cos\alpha/5\Rightarrow {cos\alpha}^{2}+({cos\alpha/5})^{2}=1\Rightarrow cos\alpha=5/\sqrt[]{26}...entao, 25=225+{AC}^{2}+30AC.(5/\sqrt[]{26})\Rightarrow {AC}^{2}-(150/\sqrt[]{26})AC+200=0...cujas soluçoes sao AC\simeq18.95 OU AC\simeq10.55(q. nao pode ser soluçao pois,10.55\prec15)...logo temos AB.AC=200 e AB+BC=18.95...logo BC\simeq8.4
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Plana

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.