• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Me Ajuda por favor algebra nao-linear

Me Ajuda por favor algebra nao-linear

Mensagempor Uesley Junior » Sex Out 10, 2014 14:53

Para destacar a importância de trabalhar com sistemas de equações não lineares, vamos levantar a situação em que existe a necessidade de realizar a análise do comportamento de um regime permanente do circuito não linear, quando os valores de tensão através dos resistores podem ser obtidos através da resolução de um sistema de equações não lineares, e o problema se reduz a encontrar uma raiz para o sistema de equações. Uma segunda situação permite mencionar que, no sistema aéreo, os controladores de voo trabalham com radares e, quando dois destes radares estão localizados em posições conhecidas, eles podem determinar a distância de suas localizações até uma aeronave que está se aproximando dentro do espaço aéreo. Neste caso, também temos um sistema de equações não lineares, e a solução está em calcular o valor das raízes das equações. Assim, efetue os seguintes cálculos:
Dado o sistema de equações não lineares:
4{x}^{2}+4{y}^{2}=8


4{x}^{2}-{y}^{2}=4

faça uma análise do sistema e, na sequência, assinale a alternativa CORRETA:
a - As derivadas parciais das duas funções que compõem o sistema apresentam ponto de descontinuidade.
b - No sistema, as variáveis x e y assumem o mesmo valor.
c - O Método de Newton é apropriado para calcular o erro relativo das variáveis com referência às raízes de ambas as funções.
d - As duas funções que compõem o sistema apresentam ponto de descontinuidade.
Uesley Junior
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Out 10, 2014 13:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Me Ajuda por favor algebra nao-linear

Mensagempor adauto martins » Sex Out 10, 2014 18:55

as soluçao do sistema sao:
(2\sqrt[2]{5})/5,\sqrt[2]{6}/5),(-2(\sqrt[2]{5})/5,(\sqrt[2]{6})/5),
-2(\sqrt[2]{5})/5,-(\sqrt[2]{6})/5),(2(\sqrt[2]{5})/5,-(\sqrt[2]{6})/5),portanto nao apresenta pontos de descontinuidade...suas derivadas parciais tem como soluçoes a origem(0,0),entao nao apresentam pontos de descontinuidades...logo a letra c) e a resposta do exercicio...agora e desenvolver o sistema no metodo de newton e verificar o erro...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}