• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação da circunferencia

equação da circunferencia

Mensagempor elizaaa » Qua Set 24, 2014 18:12

determinar a equação reduzida :

4x² + 4y² +4x -16y -467 = 0

me ajudem eu ja fiz outras do tipo x² + y² -6x +8y +16 = 0

mas essa outra eu nao sei fazer , no caso o que me confundiu foi o 4 na frente do x² e y²
elizaaa
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 24, 2014 18:07
Formação Escolar: GRADUAÇÃO
Área/Curso: arquitetura
Andamento: cursando

Re: equação da circunferencia

Mensagempor DanielFerreira » Qui Set 25, 2014 22:44

Olá!

\\ 4x^2 + 4y^2 + 4x - 16y - 467 = 0 \\\\ (4x^2 + 4x) + (4y^2 - 16y) = 467 \\\\ (2x + 1)^2 - 1 + (2y - 4)^2 - 16 = 467 \\\\ (2x + 1)^2 + (2y - 4)^2 = 484 \\\\ \left [ 2 \cdot \left( x + \frac{1}{2} \right) \right]^2 + \left[ 2 \cdot (y - 2) \right]^2 = 484 \\\\ 4 \cdot \left(x + \frac{1}{2} \right)^2 + 4 \cdot \left(y - 2 \right)^2 = 484 \;\;\; \div (4 \\\\\\ \left(x + \frac{1}{2} \right)^2 + \left(y - 2 \right)^2 = 121 \\\\\\ \boxed{\left(x + \frac{1}{2} \right)^2 + \left(y - 2 \right)^2 = 11^2}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: equação da circunferencia

Mensagempor jcmatematica » Sex Set 26, 2014 10:00

Ola Daniel, sempre na ativa.



Lembra de mim...

Nao tenho participado do forum do SOENSINO. Perdi meu cadastro. Fiz diversos outros cadastros mas nao recebo o email de ativacao.

Foi uma pena.

Rsrsrs
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado

Re: equação da circunferencia

Mensagempor DanielFerreira » Sex Set 26, 2014 23:43

Olá JC,
boa noite!
Lembro-me de você sim! Também não participo do referido fórum.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: equação da circunferencia

Mensagempor jcmatematica » Sáb Set 27, 2014 15:18

danjr5 escreveu:Olá JC,
boa noite!
Lembro-me de você sim! Também não participo do referido fórum.


Olá.

Que legal que se lembra de mim. Rsrsrs.


Eu encontrei este e estou participando agora.

Qual é mesmo o endereço de seu fórum?
jcmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 46
Registrado em: Ter Jul 29, 2014 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matematica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}