• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto solução

Conjunto solução

Mensagempor Carlos28 » Qua Set 24, 2014 11:31

Considere a inequação -x\geq0. dê o conjunto solução quando:

a) U=Q{+}_{}

b) U=Q{-}_{}
Carlos28
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Qui Nov 08, 2012 08:14
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Conjunto solução

Mensagempor Russman » Qui Set 25, 2014 17:51

Se -x \geq 0 e o conjunto universo é os Reais a solução é S = \left \{ x \in \mathbb{R} \setminus x\leq 0 \right \}.

Agora, se o conjunto universo é os racionais positivos então o conjunto solução é nulo. Se os racionais negativos, o próprio pois este está contido nos reais.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.