• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inexistência de um limite

Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 00:21

Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Sáb Ago 16, 2014 18:42

fisicanaveia escreveu:Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?



Sim existe outros como por exemplo :


lim x->infinito senx=valor indefinido entre -1 e 1


pois quando "x" tende a mais infinito a função seno ficará oscilando em -1 e 1.Logo não existe limite, pois se existisse o limite seria um valor real único.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 22:57

Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?! Mas tirando isso, não existe nenhum outro caso ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Dom Ago 17, 2014 12:37

fisicanaveia escreveu:Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?!


Sim.Se existir o limite, o limite tem que ser único.





fisicanaveia escreveu:Mas tirando isso, não existe nenhum outro caso ?



Existe os casos de quando "x" tende a valores que não estão no domínio, mas esse caso recai em limites laterais diferentes :

lim x->0 \sqrt{x}



observe que quando "x" tende a valores maiores que 0 , o limite é zero, mas quando "x" tende a valores menores que 0 (isto é valores negativos), o limite não existe pois a função raiz quadrada de x só está definida para [0,+infinito) .
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Seg Ago 25, 2014 20:11

Então, voltaria a questão de limites diferentes ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Qua Ago 27, 2014 19:15

fisicanaveia escreveu:Então, voltaria a questão de limites diferentes ?



De certa maneira sim.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59