• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inexistência de um limite

Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 00:21

Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Sáb Ago 16, 2014 18:42

fisicanaveia escreveu:Quais são todas as possibilidades da inexistência de um limite ? Eu sei que o limite não existe quando os limites laterais são diferentes, mas existem outros motivos ?



Sim existe outros como por exemplo :


lim x->infinito senx=valor indefinido entre -1 e 1


pois quando "x" tende a mais infinito a função seno ficará oscilando em -1 e 1.Logo não existe limite, pois se existisse o limite seria um valor real único.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Sáb Ago 16, 2014 22:57

Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?! Mas tirando isso, não existe nenhum outro caso ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Dom Ago 17, 2014 12:37

fisicanaveia escreveu:Ok. Então, considerando : \lim_{x\rightarrow a} f(x) , podemos dizer, generalizando, que quando os valores de f(x) não tendem a um n° fixo quando x tende a 'a' , aí o Limite não existe ?!


Sim.Se existir o limite, o limite tem que ser único.





fisicanaveia escreveu:Mas tirando isso, não existe nenhum outro caso ?



Existe os casos de quando "x" tende a valores que não estão no domínio, mas esse caso recai em limites laterais diferentes :

lim x->0 \sqrt{x}



observe que quando "x" tende a valores maiores que 0 , o limite é zero, mas quando "x" tende a valores menores que 0 (isto é valores negativos), o limite não existe pois a função raiz quadrada de x só está definida para [0,+infinito) .
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Inexistência de um limite

Mensagempor fisicanaveia » Seg Ago 25, 2014 20:11

Então, voltaria a questão de limites diferentes ?
fisicanaveia
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Ago 16, 2014 00:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: Inexistência de um limite

Mensagempor Man Utd » Qua Ago 27, 2014 19:15

fisicanaveia escreveu:Então, voltaria a questão de limites diferentes ?



De certa maneira sim.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)