• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 15:23

Se ( 3 - x , x , raiz quadrada de 9 - x ) é uma progressão aritmética, seu 6° termo é ?

Estou com dúvida na parte da álgebra.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 15:47

A progressão é \left \{ 3-x,x,\sqrt{9-x} \right \} ?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 16:01

Simm !
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 17:01

Em uma P.A. de 3 termos \left \{ a_1,a_2,a_3 \right \} é verdade que, se r for sua razão,

a_2 = a_1 + r
a_3 = a_2+r

Assim, como r=r, temos

a_2 - a_1 = a_3 - a_2

de onde

a_2 = \frac{a_1 + a_3}{2}

Ou seja, o termo central é a média aritmética simples dos termos adjacentes!! Podemos usar isto. Aplicando ao problema, vem que

x = \frac{3-x+\sqrt{9-x}}{2}

Temos uma equação pra x. Tente resolver. Eu calculei x = \frac{17}{9}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 17:08

Isso eu já sei, mas eu queria ver a resolução da parte que você calculou. Estou com dificuldade na álgebra.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 17:26

Parece difícil, mas não é. Da direita, basta passar o 2 multiplicando, o -x somando e o 3 subtraindo. Ou seja,

x=\frac{3-x+\sqrt{9-x}}{2} \Rightarrow 3x-3=\sqrt{9-x}

Agora, elevando ambos membros ao quadrado você se livra da raiz quadrada.

\left (3x-3  \right )^2=\left (\sqrt{9-x}  \right )^2\Rightarrow 9x^2-18x+9=9-x \Rightarrow 9x^2 - 17x=0

A equação obtida é de 2° grau e voc~e pode resolver pela fórmula aquela. Ou, basta notar que é possível fatorar um x.

9x^2 - 17x=0 \Rightarrow x(9x-17)=0\Rightarrow \left\{\begin{matrix}
x=0\\ 
x=\frac{17}{9}
\end{matrix}\right.

Se x=0, a P.A. é \left \{ 3,0,-3 \right \}. Repare que escolhemos a raíz negativa de \sqrt{9-x} já que para ir de 3 a 0 é necessário subtrair 3 de 3. Assim, para calcular o 3° termo precisamos também subtrair 3 de 0 que dá -3.

Se x= \frac{17}{9} a P.A. é \left \{ \frac{10}{9},\frac{17}{9},\frac{8}{3} \right \}. Aqui, a razão é positiva.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 17:55

Agora sim eu entendi. Obrigado ! Ajudou bastante.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}