• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Progressão Aritmética

Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 15:23

Se ( 3 - x , x , raiz quadrada de 9 - x ) é uma progressão aritmética, seu 6° termo é ?

Estou com dúvida na parte da álgebra.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 15:47

A progressão é \left \{ 3-x,x,\sqrt{9-x} \right \} ?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 16:01

Simm !
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 17:01

Em uma P.A. de 3 termos \left \{ a_1,a_2,a_3 \right \} é verdade que, se r for sua razão,

a_2 = a_1 + r
a_3 = a_2+r

Assim, como r=r, temos

a_2 - a_1 = a_3 - a_2

de onde

a_2 = \frac{a_1 + a_3}{2}

Ou seja, o termo central é a média aritmética simples dos termos adjacentes!! Podemos usar isto. Aplicando ao problema, vem que

x = \frac{3-x+\sqrt{9-x}}{2}

Temos uma equação pra x. Tente resolver. Eu calculei x = \frac{17}{9}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 17:08

Isso eu já sei, mas eu queria ver a resolução da parte que você calculou. Estou com dificuldade na álgebra.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Progressão Aritmética

Mensagempor Russman » Sex Jul 18, 2014 17:26

Parece difícil, mas não é. Da direita, basta passar o 2 multiplicando, o -x somando e o 3 subtraindo. Ou seja,

x=\frac{3-x+\sqrt{9-x}}{2} \Rightarrow 3x-3=\sqrt{9-x}

Agora, elevando ambos membros ao quadrado você se livra da raiz quadrada.

\left (3x-3  \right )^2=\left (\sqrt{9-x}  \right )^2\Rightarrow 9x^2-18x+9=9-x \Rightarrow 9x^2 - 17x=0

A equação obtida é de 2° grau e voc~e pode resolver pela fórmula aquela. Ou, basta notar que é possível fatorar um x.

9x^2 - 17x=0 \Rightarrow x(9x-17)=0\Rightarrow \left\{\begin{matrix}
x=0\\ 
x=\frac{17}{9}
\end{matrix}\right.

Se x=0, a P.A. é \left \{ 3,0,-3 \right \}. Repare que escolhemos a raíz negativa de \sqrt{9-x} já que para ir de 3 a 0 é necessário subtrair 3 de 3. Assim, para calcular o 3° termo precisamos também subtrair 3 de 0 que dá -3.

Se x= \frac{17}{9} a P.A. é \left \{ \frac{10}{9},\frac{17}{9},\frac{8}{3} \right \}. Aqui, a razão é positiva.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Progressão Aritmética

Mensagempor tonypenizollo » Sex Jul 18, 2014 17:55

Agora sim eu entendi. Obrigado ! Ajudou bastante.
tonypenizollo
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Jul 18, 2014 14:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.