• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Odle89 » Dom Dez 20, 2009 06:45

Bom dia pessoal!
Estou precisando de uma ajudinha pois tenho prova esta segunda e estou fazendo os exercícios de algumas provas antigas do professor porém não tenho as respostas das questões e, como ainda não estou dominando a matéria, gostaria que vocês confirmassem a resolução minha ou a corrigissem se for o caso.

tenho a função f(x) = \:f(x)=ln \left(\frac{1}{x} + \frac{1}{x^2}\right)

eu sei que a derivada deve ser do tipo f'(x) = u' / u

Daí fiz a função se tornar = ln\left(\frac{x+1}{x^2} \right)

Segui então a substituição e aplicação da derivada da seguinte forma:
f'(x)= \frac{\left(\frac{x+1}{2} \right)} {\left(\frac{x+1}{2} \right)} (derivada da fração superior sobre a fração inferior) e cheguei no seguinte resultado:
\frac{1}{x+1}

Está correta?
Qualquer dúvida no procedimento realizado por mim é só postar!
Abraços e desde já muito obrigado pela prontidão e parabéns ao fórum....
Odle89
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 17, 2009 03:53
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação eng. Civil (UFOP)
Andamento: cursando

Re: Derivada

Mensagempor Molina » Dom Dez 20, 2009 11:29

Bom dia, amigo.

Já tentou resolver através da derivada composta?

Chame u=\frac{x+1}{x^2}

Então o que precisamos derivar é y=ln(u)

Dessa forma, para calcular \frac{dy}{dx} fica:

\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}

Conseguiu entender?

Estou um pouco atarefado, mas caso você não consiga eu tento resolver para você.

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivada

Mensagempor Odle89 » Dom Dez 20, 2009 17:32

molina escreveu:Bom dia, amigo.

Já tentou resolver através da derivada composta?

Chame u=\frac{x+1}{x^2}

Então o que precisamos derivar é y=ln(u)

Dessa forma, para calcular \frac{dy}{dx} fica:

\frac{dy}{dx}=\frac{dy}{du}*\frac{du}{dx}

Conseguiu entender?

Estou um pouco atarefado, mas caso você não consiga eu tento resolver para você.


:y:


Boa tarde molina!
primeiramente obrigado pela atenção.

Pois foi dessa forma que eu resolvi e, pela tabela das derivadas diretas sei que a derivada de ln u = u'/u ...
O que eu tenho dúvida é se o resultado é esse pois fiz de uma outra maneira tb que acho que não é correta e obtive um resultado semelhante...
Queria saber o resultado pra poder saber a forma correta!

Obrigado novamente.

Abraços!
Odle89
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Dez 17, 2009 03:53
Formação Escolar: GRADUAÇÃO
Área/Curso: graduação eng. Civil (UFOP)
Andamento: cursando

Re: Derivada

Mensagempor Elcioschin » Seg Dez 21, 2009 18:37

Odle89

Tanto do seu jeito como do jeito do Molina dá certo.

Só que você cometeu um erro ao derivar:

f(x) = ln[(x + 1)/x²]

A derivada de f(x) = g(x)/h(x) é f '(x) = [h(x)*g'(x) - g(x)*h(x)]/[h(x)]² [e não f '(x) = g'(x)/h'(x)]

f '(u) = [(x²)*(x + 1)' - (x+ 1)(x²)']/(x²)² ----> f '(u) = [x²*1 - (x + 1)*(2x)]/(x²)² ----> f '(u) = (- x² - 2x)/(x²)² ----> f '(u) = - (x + 2)/x³

Agora continue:

f '(x) = u'/u -----> f '(x) = [-(x + 2)/x³]/[(x + 1)/x² ----> f '(x) = - (x + 2)/x*(x + 1)
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Derivada

Mensagempor Molina » Seg Dez 21, 2009 23:07

Como eu disse, estou meio sem tempo nesse final do ano.

Então fica difícil resolver as questões, mas sempre tento ajudar da melhor forma.

Eu havia visto que a derivada estava errada, pois a integral do seu resultado nao retorna no f(x) inicial.

O Elcio já cantou a letra...

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Derivada

Mensagempor Cleide » Ter Dez 22, 2009 20:12

Olá pessoal! Eu gostaria de saber como demonstrar que se f é uma função par, então f'(x)= -f'(-x) e também que se f é uma função ímpar, então f'(x)=f'(-x). É URGENTE!!! Obrigada...
Cleide
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Dez 22, 2009 20:01
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.