• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor SauloRJ » Ter Mai 27, 2014 14:25

Boa Tarde amigos do fórum!
Estou com dúvida na seguinte questão:
(UF.GO) O conjunto-solução da inequação \left|\frac{2x+4}{x-2} \right|\leq0 é:
a) {x ? ? : x = -2}
b) {x ? ? : x ? 2}
c) {x ? ? : x = 2}
d) {x ? ? : -2< x ?2}
e) {x ? ? : x< -2 ou x >2}

Resolvi assim:
2x+4 ? 0
2x+4 =0
2x=-4
Imagem
x=-2
x-2 < 0
x-2 = 0
x=2
Imagem
Estudo dos snais:
Imagem
S={x ? ? : -2? x <2}

Mas a resposta do gabarito é letra A, alguém poderia me explicar como chegar neste resultado?
Avatar do usuário
SauloRJ
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 06, 2014 11:08
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação Modular

Mensagempor SauloRJ » Qua Jun 04, 2014 13:47

SauloRJ escreveu:Boa Tarde amigos do fórum!
Estou com dúvida na seguinte questão:
(UF.GO) O conjunto-solução da inequação \left|\frac{2x+4}{x-2} \right|\leq0 é:
a) {x ? ? : x = -2}
b) {x ? ? : x ? 2}
c) {x ? ? : x = 2}
d) {x ? ? : -2< x ?2}
e) {x ? ? : x< -2 ou x >2}

Resolvi assim:
2x+4 ? 0
2x+4 =0
2x=-4
Imagem
x=-2
x-2 < 0
x-2 = 0
x=2
Imagem
Estudo dos snais:
Imagem
S={x ? ? : -2? x <2}

Mas a resposta do gabarito é letra A, alguém poderia me explicar como chegar neste resultado?


Poxa, ninguém...
Avatar do usuário
SauloRJ
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 06, 2014 11:08
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação Modular

Mensagempor e8group » Qua Jun 04, 2014 15:25

Dica:

Módulo de qualquer número real é não negativo ,isto é , para qualquer número real x tem-se |x| \geq 0 .

Pois bem , admita que S= conjunto dos números reais x para o qual a desigualdade fornecida por você é verdadeira . Suponha S não vazio . Da suposição , existe x em S tal que | \frac{2x+4}{x-2}| \leq 0 (1) .

Note que x \in \mathbb{R} , então 2x+4 ,x -2 \in \mathbb{R} e portanto \frac{2x+4}{x-2} também é um número real o que nos garanti que | \frac{2x+4}{x-2}| \geq 0    (2) .

Combinando (1) e (2) ,resulta


| \frac{2x+4}{x-2}| = 0 .

Consegue avançar ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Inequação Modular

Mensagempor SauloRJ » Qua Jun 04, 2014 19:52

santhiago escreveu:Dica:

Módulo de qualquer número real é não negativo ,isto é , para qualquer número real x tem-se |x| \geq 0 .

Pois bem , admita que S= conjunto dos números reais x para o qual a desigualdade fornecida por você é verdadeira . Suponha S não vazio . Da suposição , existe x em S tal que | \frac{2x+4}{x-2}| \leq 0 (1) .

Note que x \in \mathbb{R} , então 2x+4 ,x -2 \in \mathbb{R} e portanto \frac{2x+4}{x-2} também é um número real o que nos garanti que | \frac{2x+4}{x-2}| \geq 0    (2) .

Combinando (1) e (2) ,resulta


| \frac{2x+4}{x-2}| = 0 .

Consegue avançar ?



Continuo encontrando x=-2 e x=2, realmente não sei como chegar na resposta do gabarito que é x=-2!
Avatar do usuário
SauloRJ
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 06, 2014 11:08
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação Modular

Mensagempor e8group » Qua Jun 04, 2014 20:05

Note que x-2 \neq 0 (Caso contrário teríamos indeterminação ) .

Segue , |\frac{2x+4}{x-2}|= \frac{|2x+4|}{|x-2|} =  0 o que implica que |2x+4|= 0 o que implica que 2x+4=0 ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59